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Abstract

This report represents the fifth year of research performed under the

auspices of the Joint Services Electronics Program at Texas Tech University.

The program is concentrated in the "information electronics" area and in-

cludes researchers from both the departments of Electrical Engineering and

Mathematics. Specific work units deal with Feedback System Design, Non-

linear Control, Nonlinear Fault Analysis, Image Processing, and Pointing

and Tracking.

Each work unit is represented in the report by a summary of the work

performed during the past year, a list of publications and activities in the

area, reprints of all papers which have been published during the past year,

and abstracts of pending papers. In addition, the report includes lists

of all grants and contracts administered by JSEP personnel, the department

of Electrical Engineering and the Department of Mathematics; and a list of

all publications prepared by JSEP personnel.
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Significant Accomplishments Report

A. Nonlinear Control

During the past year Professor L.R. Hunt and his students working

jointly with researchers at NASA/AMES have developed an entirely new

approach to nonlinear control system design problem. The key to the

new approach is the formulation of an exact linearization theory which

permits the nonlinear system under investigation to be transformed,

without approximation, into an equivalent linear system to which classical

design methodologies are applicable. This has, in turn, been achieved

through the application of the powerful techniques of modern differential

geometry through which it has been possible to convert the exact lin-

earization concept from a theoretical abstraction into a viable design

algorithm. Indeed, the algorithm has already been implemented at NASA!

AMES in the design of a helicopter autopilot.

Although the exact linearization concept goes back to Poincare and

has been investigated by a number of researchers during the past decade

the class of transformations employed in this work has typically been

limited to those which could be implemented by feedback. Unfortunately,

this class of transformations has not proven to be amenable to mathematical

analysis. To the contrary by adopting a larger class of transformations

originally proposed by R. Su, Professor Hunt has been able to formulate a

complete theory around the exact linearization concept. This includes

precise necessary and sufficient conditions for a plant to admit an exact

linearization and a partial differential equation whose solution defines

the appropriate transformation with which to linearize a given system.



Although Dr. Hunt's research is extremely theoretical in nature

his research has been closely coordinated with the autopilot design

program at NASA/AMES. Indeed, AMES has already employed his work in the

design of an experimental helicopter autopilot which is presently under-

going simulation and is expected to fly in the near future.

B. Nonlinear Fault Analysis

During the past year we completed work (we believe successfully) on a

long standing JSEP work unit directed at the development of an algorithm

for the solution of the analog fault diagnosis problem. Although many

algorithms have been proposed over the years which were theoretically

capable of determining the fault circuit components from external measure-

ments the problem has been to find an algorithm which could do the job with

limited computational resources and constraints on the number of measurements

which can be made on the unit under test.

These problems have now been resolved via a new self-testing algorithm

developed by Professor Saeks and his students. In essence, the algorithm

exploits the fact that all of the system components do not fail simultaneous-

ly thereby permitting one to use a subset of the system components to test

the remaining components. This, in turn, yields conditional test informa-

tion which is valid if the given subset of components are, in fact, good.

The results of several such conditional tests are then combined with the

aid of an upper bound on the number of simultaneous failures to obtain the

final diagnosis. Although the procedure is somewhat roundabout it meets

most of the criteria which have been established over the years by

researchers in the analog fault diagnosis area.

I). It is applicable to both linear and nonlinear systems modeled

2
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in either the time or frequency domain.

ii). It can be used to locate multiple hard or soft faults.

iii). Finally,* it is capable of locating failures in "replaceable

Modules" such as an IC chip, a PC board, or a subsystem rather

than discrete components.

As of the present timewe have completed the algorithm development

work related to the new algorithm while we are presently doing a pre-

liminary investigation of the software engineering problems which must

be resolved as a prerequisite to implementing the algorithm in a user

oriented software code.

3
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6. Summary:

Although control theorists have studied higher order and multivariate

systems for more than a quarter of a century this research has had little

impact on the 000 community in which single loop PI designs still predominate.

Indeed, such controllers represent the physical limit of what can be achieved

with the hydraulic and/or analog electronic hardware which is traditionally

used to implement a control system. With the advent of the digital control

computer, however, higher order and multivariate controllers have become a

reality, wherein, one can implement any desired compensator design simply

by burning the appropriate program into a ROM.

Given the renewed interest in higher order multivariate control brought

about by the digital control computer the present work unit is directed toward

the problem of developing an efficient algorithmic design procedure for linear

multivariate control systems using frequency domain techniques. Our approach

is based on a, now classical, result of Youla, Bongiorno and Jabr in which an

explicit parameterization of the set of compensators which stabilize a given

plant is formulated. Indeed, with the aid of a modified parameterization
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due to Desoer, Liu, Murray, and the author one can parameterize the set

of compensators for a given plant in such a manner that the resultant feed-

back system gains are linear (actually affine) in the design parameter.

This, in turn greatly simplifies the process of specializing the design to

meet additional constraints and, as such, a powerful design theory has been

obtained which includes the ttacking and distubance tejection probtems, the

pote placement problem, %obu6t design, design with stable ot proper compen-

4atoA4, and the modeZ matching problem as well as the beginnings of a

simuttaneouw design and adzptive cont'tol theory.

7. Publications and Activities:

A. Refereed Journal Articles

1. Saeks, R., and J. Murray, "Feedback System Design: The Tracking
and Disturbance Rejection Problems," IEEE Trans. on Auto. Cont.,
Vol. AC-26, pp. 203-217, (1981).

2. Saeks, R., Murray, J., Chua, 0., Karmokolias, C., and A. Iyer,
"Feedback System Design: The Single Variate Case," Circuits, Sys-
tems, and Signal Processing, (to appear).

B. Conference Papers and Abstracts

1. Karmokolias, C., and R. Saeks, "A Fractional Representation Approach
to Adaptive Control," Proc. of the IEEE Conf. on Decision and Con-
trol, Albuquerque, NM, Dec. 1980, pp. 272-273.

2. Saeks, R., and J. Murray, "Fractional Representation, Algebraic
Geometry, and the Simultaneous Stabilization Problem," Proc. of
the IEEE Inter. Symp. on Circuits and Systems, Chicago, April 1981,
pp. 463-464.

3. Karmokolias, C., and R. Saeks, "Suboptimal Control with Optimal
Quadratic Regulators," Proc. of the Conf. on Information Sciences
Systems, Johns Hopkins Univ., April 1981, pp. 53-58.

4. Murray, J., and R. Saeks, "Simultaneous Design of Control Systems,"
Proc. of the IEEE Conf. on Decision and Control, San Diego, Dec.
1981, (to appear).
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C. Preprints

1. Saeks, R., and J. Murray, "Fractional Representation, Algebraic
Geometry, and the Simultaneous Stabilization Problem," (sub-
mitted for publication).

D. Dissertations and Theses

1. A. Iyer, Ph.D. Dissertation, (in preparation).

E. Conferences and Symposia

1. Saeks, R., and J. Murray, 1980 IEEE Conf. on Decision and
Control, Albuquerque, NM, Dec. 1980.

2. Saeks, R., 1981 Joint Automatic Control Conf., Charlottesville,
Va., June, 1981.

3. Saeks, R., IEE Conf. on Control and its Applications, Coventry,
England, April, 1981.

4. Saeks, R., IEEE Inter. Symp. on Circuits and Systems, Chicago,
Il. April 1979.

5. Saeks, R., and J. Murray, 1981 Texas Systems Workshop, Dallas,
TX., April 1981.

6. Iyer, A., 24th Midwest Symp. on Circuits and Systems, Albuquerque,
NM, June 1981.

F. Lectures

1. Saeks, R., NASA/AMES Research Center, Feb. 1981.

2. Saeks, R., University of Manchester Inst. of Science and Tech-
nology, April 1981.

3. Saeks, R., Cambridge Univ., April 1981.
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Feedback System Design: The Tracking and
Disturbance Rejection Problems
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1. INTRODUCrION The present research program began with the derivation
of a simple algebraic proof for the Youla/Bongiorno/Jabr

THE EEDACKsysem esin poblm my ntu-stabilization theory and the generalization of the theory to
THrll be subivi ed into twole tasks:t include a variety of "system placement" problem in a

1) satisfaction of deodn constraints, and general linear system setting [6]. The spirit of this work
2) 'optiizadio. at system perfacmancleI was very close to that of several other authors in the area
The fims and foremnot deign constraint is stability, of "algebraic" control theory (IL, (2L, (4L (7M (12L, (133.

Additionally, system specifications my also include a Among the problems which have been studied by these
tracking and/or disturbance rejection constraint. Once authors are those of tracking and disturbance rejection. In
these constraints have been satisfied, the remaining design the present paper, we study these problems in a general
latitude may then be used to -optimize- the qualitative axiomatic setting. Two restrictions are made, however.
performance of the system: cost, energy consumption, First, we assume that the disturbances affect the system in
overshoot, reliability, complexity, etc. a very simple way, and second, we assume that the de-

The purpose of the present paper is to report on the no0minators Of the reference generators commute with
results of a research program whose goal is the fomua everything. (See Section V for a more detailed explana-
tion of a new algebraic fractional representation aprah tion.) With this simplification, it is again possible to
to the feedback system design problem. The key to this obtain a complete parameterization of all controllers which
approach is a design philosophy pioneered by D. ( achieve the prescribed design contraints; by sequentially
Youla, in which one parameterizes the entire solution reparameterizing the controllers as additional design con-
space for the design problem, rather than simply con- straints are imposed. Moreover, the feedback system gain
structing a single solution 115]-[171. The approach is ide-. which result from such a controller are linear (affine) in
ally suited for the feedback system design problem the resultant design parameter, thereby simplifying the
wherein one can satisfy several design constraints by second task referred to above, namely optimiztion.
sequentially repurmeterizing the controller as additional Throughout the paper we will work with the feedback
constraints are imposed with the system performance being system of Fig: 1: Here, P is a given plant and C is the

F "optimized over the final parameterization. In (151 and compensator to be designed while r' and A are reference
(16] youla Dongiorno, and jabr parameterized the stabi- generators that model the inputs to be tracked and re-
lizing controllers for single-variate and multivariate fced jected, respectively. (The sense in which these generators
back systems, respectively, and showed that the optimiza- model inputs will be made precise in Sec~tion 111) The
tion of the system performance over the resultant Problem of parameterizng the compensators that stabilize
parameteer space reduced to a standard Wilener-Hopf the feedback system, termed problem S, was the subject of
problem. More recently Youla has adopted a similar ap- (6] and will serve as the starting point for the present
proachi to the design of stochastic estimators in which the paper in which we investigate three additional design
set Of covaanncs Which interpolate Ones observations of Problem:
a stochastic proess are parameterized (171. Problem ST. Parameterize the compensators that

simultaneousiy stabilize the system and cause it to track
Maamat recived January Z. I9M0 frvid October S. 19 M the response of 7'.

work was supporied in pait by the Joint SayS.. Eectvam Pros at Problem SR: Parameterize the compensators that
Tarnau Teebaical Univerisy sande ONS. Contact 76C.1 136. simultaneously stabilize the system and cause it to rejectlbs author ans wM ish she pernent at Elecria IvseraS Tow;
Technical Uninmity, Lubbock. TX 7940. the response of R.

JzziLCLW.,LG L-J kbLmiaNO n
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Problem ST." Parameterize the compensators that This equality is equivalent to the classical coprimeness
simultaneously stabilize the system, cause it to track the concept for rational functions and matrices while being
response of T, and reject the response of R. well defined in our general ring theoretic setting. In par-

Of course, the concepts of stability, tracking, and dis- ticular, if G is the ring of rational functions and H is the
turbance rejection will be made precise as required. ring of polynomials (e.g., in discrete-time systems), (1.2)

This, of course, is by no means the most general possi- implies that p, andf, have no common zeros. If G is the
ble system. In particular, the disturbance is assumed ring of rational functions and H is the ring of exponen-
merely to be added to the input, and the measured output tially stable rational functions, (1.2) implies that p, and,
is assumed to be the same as the regulated output. We have no common right-half plane zeros.
remark in passing that the problem of rejecting an addi- Since the ring G is, in general, noncommutative, we also
tive disturbance at the output is mathematically equiva- define a eft fractionalreprmtadon for P via the equality
lent to the tracking problem. P 11(1.3)

In the remainder of this introduction our algebraic P0; O(
fractional representation theory is reviewed and the re- for pi EH and, El. Furthermore, we say that this repre-
suits on the stabilization problem, derived in [6], are sentation is left coprime if there exists q, and 41 in H such
summarized. In Section II a more powerful "doubly that
coprime" fractional representation theory is formulated
and its properties developed. In the following section the plql +j,, -1. (1.4)
concepts of asymptotic tracking and disturbance rejection
are defined in our algebraic setting and theorems char- Of course, in the classical case of a rational function or

acterizing the stable feedback systems which had the matrix these fractional representations are assured to ex-
response of T and/or reject the response of R are ob- ist. However, this is not the case in the general ringresponsetheoretic setting. Therefore, for distributed, tim-vrying
tained. The fundamental feedback system design equa-

tions are derived in Section IV, wherein it is shown that and multidimensional systems, we assume that our plant
problems ST, SR, and STR each reduce to the solution of admits such a representation as a prerequisite to the

a linear equation in the ring of stable operators. A neces- theory.
sary and sufficient condition for the existence of a solu- If one is given two fractional representations for a

tion of these equations and the desired parameterization plant, say P-x1 7 t and P-p,f,7', where the second

of the solution space are obtained in a "generalized multi- satisfies the coprimeness condition of (1.2) then the two
variate" class of systems in Section V. Finally, some representations differ by a greatest right dWis., (61, rEH,

examples of the theory are presented in Section VI. Le,

Our algebraic theory [6] is set in a nest of rings, groups, x,-p,r (1.5)
and multiplicative structures

and

Here, G is o ring with identity that represents the general R, -hfr. (1.6)

class of systems with which we wish to work: rational To give an idea of the arguments used later, we prove this
matrices, continuous operators, a class of transcendental fact as follows. Since , 61 the unique solution of (1.5)
functions, etc. H is a subring of G containing the identity and (1.6) is r-'ij, and hence we must show that this
that models the systems, which are stable in some sense: rEH. To this end we invoke (1.2) obtaining
poles in a prescribed region, transcendental functions with
restricted singularities, stable operators, etc. Finally, I r". 'I, - (qtp, + Ii,) 'i,
denotes the multiplicative set composed of elements ofH - qp,7 t , +4,, -q,x, + 4,,
that admit an inverse in G, while J denotes the multiplica-
tive subgroup of I made up of elements that are invertible which implies that r6H since it is expressed as the sum of
in H. Detailed examples of the axiomatic structure, products of elements of H. Similarly, if P-I'tp -i"'xt,
(G,H,I,J) were given in [61 and will not be repeated where j0i'p is left coprime, then the two left fractional
heem representations differ by a greame /*.divisor [61 IEH

We say that a plant P has a right fractional repreama- such that
tim in (G, H, , J) if x, "*1 (".0)

P-p,6,' (1.1) and

where p, 6H and e, E. Furthermore, we say that this i2t'41. (1.9)
representation is right coprine if there exists q, and 4, in H Thus, our abstract fractional representation theory is quite
such that similar to the classical theory for polynomials and rational

q,p, +4,-,,- 1. (1.2) functions even though it is set in an abstract ring and

12
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includes distributed, time-varying, and multidimensional plq, +I,4- i. (2.3)
systems.

Since H represents a ring of stable systems we say that Although this structure sufficed for the stabilization the-
the feedback system of Fig. I is stable if all of its internal' ory of problem S, one can, in fact, adopt a stronger
and external gains are elements of H. By using the above structure without loss of generality [3).
described fractional representation theory a solution to Propery 1: Assume that P admits both left and right
problem S was obtained in [6]. In particular, if the plant P coprime fractional representation such that (2.1) through
is given by P-pF 'p,. then the compensator (2.3) are satisfied. Then there exist q, and 4; in H such

that
#+q,) 1.1) wq;+j,4; - 1 (2.4)

stabilizes the feedback system for any wEH such that and
(IIT 1+,)EI; and every stabilizing compensator is given
by (1.10) for some wElH. Moreover, when this compensa- 4,q -q,. (2-5)
tor is used in the feedback system all of the usual gains of
the closed-loop system are linear (actually affine) in w. Proof. Recall that the inverse of a two by two matrix

Specifically, the system's input/output gain is given by with elements in a noncommutative ring is given by
h, -- p,Ol +pq, (I.ll1) X Y -'. -II,-y

1Z W -W-1Z
A - I  

W- I "W - IZ&k 1y
W - i

]

while the system's input/error gain takes the form (2.6)

h,- I+pwl,-pq,. (1.12) where A-X-YW-iZ provided the indicated inverses

The remaining gains are also linear in w and are derived exist. Applying this to the matrix
in [6]. # 1

We note that even though our approach to the feedback (2.7)
system design problem is formulated in a ring, no "ring P2.7
theory" is employed. Indeed, the only mathematics re- we find
quired in the entire paper is addition, multiplication, sub-
traction, and inversion. (2.8)

Finally, the above notation exemplifies a pattern that and, after some computation,
we will try to follow throughout the paper, namely, an
input-output operator will be denoted by a single upper- r4  q ' -ql
case letter (P), its coprime factorizations will be denoted "2-9)
by the corresponding lowercase letter, with a tilde over the
denominator, and subscript I or r for left or right (e.g., where
p~J--), and last, the elements appearing in the coprime-
ness equation will be the next letter in the alphabet, with q -,q,41 + q, -j,4,ql (2.10)
tilde and subscripts matching the elements which they
multiply (e.g., qp, +,#,4 - 1). and

4; -#,-,p,q,4, p.e.A,q,. (2.11)
II. DOUBLY COPIUMI FRACTIONAL Equations (2.4) and (2.5) now follow immediately. U

RPI ToN,'s In essence, Property I implies that if a plant admits any
In the stabilization theory discussed in the p o pair of left and right coprime fractional representations

section it was assumed that the plant admitted both left then it also admits a stronger fractional representation in
and right copime fractional representations which the q's intertwine in a manner similar to the p's.

We say that such a fractional representation is dombl
P-P', ; - "P, (2.1) coprime and (dropping the primes) we denote it by

for which there exist q, r:H and 4E H such that r ~ q, ]' i q,1

qp, +4,,- (2.2) [ p, / p, #t~ 2.2

and q, EH and 4, EH such that Since a doubly coprime fractional representation exists
whenever separate left and right coprime fractional repre-

1ow ammpt of stbity hm tmqu that &A reina sytmm pi' sentations exist we may work with a doubly coprime
m so" (A. in H) to addatiou to the pm b ad bemten fractional representation without loss of generality. This
Ue mumn m ouu. ram coapun wmud inmon detain, in turn, means that rather than the three equalities (2.1)
i61.

{ 13
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through (2.3) we have eight equalities with which to
manipulate the feedback system equations. These are oh-
tained by both premultiplying and postmultiplying the
matrix of (2.12) by its inverse to compute the identity and
take the form

L -JIP, (2.13) ft 2. Swbes f.dback

I(2.14) response of R is asymptotic to zero. See [11} [3L [4], and [7)
4, +q,p, -1 (2.15) for a fuller discussion of thes concepts of tracking and

rejection.
p~q, +jF11 - (2.16) . Now, _-sider the feedback system of Fig. 2. Adopting

J,q, "qfr (2.17) an argument similar to that employed by Francis [7 in a
frequency domain setting. we obtain the following the-

pA, "4~ (2.18) orem, which characterizes the stable feedback systems
M, +q -1 (2.19) which track T and/or reject R. For this purpose we

assume that P, T, and A each admit left coprime frac-
and tional representations

,q, + 4,,-l. (2.20) P;-0'p, (3.3)

Finally, we note that, if in the stabilization theory in [6] T-l - tF (3.4)
one begins with the above doubly coprime representation
for the plant, the representation (1.10) for the controller is
also doubly coprime: a simple calculation gives RF;-r (3.5)

[ p ] -'_ FP~w4 -pp * heref " - q, *p,+ , -, +q, A, 'p~q, +i,41,-1 (3-6)

t,-, +Fla, - 1 (3.7)

M. ANvsS and

We say that the feedback system of Fig. I tracks 7" if is, + 4,i-I. (3.8)
hJ'PEH. This definition may be justified by considering
the case where H is the ring of exponentially stable 77worem I: Assume that the feedback system of Fig. 2
rational functions. Here, if one lets # be the impulse is stable. Thn the system
response of T, I(s)- 7Ts) and 1) tracks Tif and only if t, is a right divisor of,, in the

sense that f,- r=H;
) (3.1) 2) rejects AR if and only ifF, is a right divisor of p,, in the

Theefore, v asymptotically tracks is if and only if same sense.

h,0(s)T(a) is exponentially stable, L.e k., TEH. Note that r We have
the impluse response of T may be unbounded (since T + 4 )  (3.9)
may be unstable) even though the input to the reference
generator is bounded. Of course, the same intution ap- +h,,+A l (3.10)
plies in a more general setting where the condition h..Te
H implies that v is asymptotic toit in whatever sense the and so hCEj-tt Hsehtq' EH. Now
response of the systems represented by elements of Nf is
asymptotic to zero. h", (fit +p,)"-, (3.11)

Similarly, we say that the feedback system of Fig. 1
rjeca R if h,AEH. Once again if H is the ring of and since the system is stable, we know (from 16D that
exponentially stable rational functions and is is the im- 01 +P1 EJ.
pulse response of R, (.)-R(s) and Therefore,

which is asymptotic to zero if and only if h,,(S)R(S) is 0, -  I H, (3.12)
exponentially stable, i.e., h,R =H. Thus, the system re-
jects R in the sense that its response to the impulse and part 1) follows. Part 2) is proved similarly. 3

14
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IV. THE DiGNo EQuATIONs requires a simultaneous solution of problems ST and SRt
with the same compensator, hence the same w. aWe now turn our attention to the system design prob. Following 14, we definep, and il to be skew coprimet if

lem ST, SA, and MT. Since in each of thene problem there existsj andi in H such that
the compensator must stabilize the system in addition to
causing it to track T and/or reject A, the theory of (61 pjA -Jt I.
implies that our compensator must take the form of (1.10) We then can state the following corollary. (Compare (2],with wE-H chosen to assure that hTe H and/or h,,,R C 4 1DH. For this purpose we assume that the plant Pn admits a [4 rolar 1:Frth1edbc3yseDf.i.1
adRar ssmdboadiylf coprne fractional represetto (21)whl ) a necessary condtio, for problem ST to admit asentaren assuin (34) (3.m), (3.7) aonc (3.8). alrer solution is that p, and t, are skew coprime;senttios asin 3-4) (35), 3.7, an (38).2) a necessary condition for problem SA to admit aTheorem 2: For the feedback system of Fig. 1: solution is that,#i, and , are right coprime;

I) poblm STis olube i an onl ifthe quaion 3) a necessary condition for problem STR to admit a
,f, +xil -pq, - 1(4.1) solution is that p, and t, are skew coprime,#fi and , are

admtsslutonwanxiri ght coprime and iland, are rght coprime.
admis slutins andx i H;Proof. If problem ST admits a solution, (4.1) is satis-2) problem SR is soluble if and only if the equation fled for some w and x in H, hence, upon rearranging the

p,wfi, +yF, -pq, (4.2) terms in this equation, we have

admits solutions w and y in H; p,[ q, - %0] + -x] , pj+17m 1 (4.7)
3) problem.STA is soluble if and only if (4.1) and (4.2) where j-q, - whi and!-' -x. To verify 2) we substituteadmit simultaneous solutions w, x, and y in H. (2.20) into (4.2) to obtain
Moreover, when a solution exists the set of compensa-

tors which solve the problem is given by p,wP, +yF, npq, - Il- 4,j, (4.8)

C- (pl +4,) 1(- V, +q,)(4.3) and rearrange terms to obtain

where wr is any solution of the appropriate equation(s),(PI pw+ 4 1fi [IyIF, - 1 (4.9)
Such that as required. Finally, if problem STA admits a solution,

WP + 4, C- . (4.1) and (4.2) are satisfied with the same w, hence, so are
(4.7) and (4.9). To obtain the final coprimeness condition

Proof. Since every stabilizing compensator is given we subtract (4. 1) from (4.2), obtaining
by (1.10) for an arbitrary weH with the resultant h,,,
given by (1.12) the w's that are both in H and simulta- £yJ, +1 X)i, - 1 (4.10)
neously plc and thereby completing the proof.N

h, T ( +,wjl -,p,) i-'1 (.4) Note that the coprinieness condition of (4.10) omsen-
h1Tm(I +~w~,-p~qJ ii (.4)illy says that one cannot simultaneously track and reject

the same signal, and is therefore a natural auxiliary condi-in H dofine the class of compensators which solve prob- tion to guarantee the simultaneous solvability of the track-lem ST. In the course of proving Theorem 1, we proved ing and disturbance rejection problems.that h'OrTEH if and only if h 4,i;'eH). Now suppose that Note also that (4. 1) is linear in the unknowns. It follows
that if this equation is solvable the solution space will be a

h,,>'.-.zeH. (4.5) linear manifold in H which can be represented in the form
w - L+ d where L is an appropriate linear operator on HThen. and or=H becomes our new design parameter. The com-

I +p'wfl, -pq, - X4, (4.6) pensaztors which satisfy the constraints of problem ST
thus take the form

which is equivalent to (4. 1). C(L~)p~,-[(vdIq)(.1
Conversely, if (4. 1) admits solutions w and x in H, then C (L~),4I[-L~~,q](.1

using this w in (1.10)ields a compensator which stabilizes and similarly for problems SR and STA. Moreover, upon
the system with h,1111-W- x eH; that is, r compensator substituting the expression w -Lo+ d ito (L 11) and (L 12)
which solves the problem ST. we obtain expressions for the romultant feedback system

The proof of 2) is obtained by a parallel argument with gains that are linear in the new design parameter v. Thus,
h.,replaced by ho and r replaced by A while 3) is all of the properties associated with the solution of prob-
obtained by recognizing that the solution of problem STAt lem S, given in [6L, are retained by the solutions ofI! 15
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problems ST, SR, and STR of the present paper. It transfer functions which are stable in an appropriate
remains, however, to derive explicit necessary and suffi- sense. More generally, multidimensional system are in-
cient conditions for the existence of solutions to these eluded in our theory with k taken to be CO and L an
problems and to formulate explicit expressions for the appropriate polydisk.
parameterization of the resultant solution space. Using the above function spaces we formulate an

Finally, we note that one normally desires a proper axiomatic structure (0,H, I, J) by letting G-Knx n be
controller C. The obvious approach is to try to find the set the set of x by n matrices whose entries are elements of K

(w6HI wp +4,61);and H-L" be the set of n by n matrices whome entries
(wEHIwp,+4, EI; are elements of L. Of course, I andJ may be constructed

if one then takes G to be a ring of proper transfer from G and H in a natural manner. Finally, we may
operators, One has obtained all .pwe stailzig emibed L into H.. LA by identifying IeL with thena by
controllers. Unfortunately, in the setting of general rings, 7 matrix 11. Under this embedding each I.EL commutes
the above set may be empty. Therefore, rather than im- with every eG-KX and heH-L'.
pose the additional structure necessary for a general the- Although we will normally work with general fractional
ory, we indicate what can be done in the classical multi- representations in {(G, H, I, J), in order to parameterize
variable case. The additional condition needed in thscs our solution spaces we need to work with a fractional
is quite weak; we merely require that for any constant representation Al- mii-'-A-m where me L' and
matrix A, there is a weH such that A e L. Such fractional representations naturally model the

situation where the denominator of a fractional represen-
w(co) -A. tation is just the common denominator of each entry in an

n by n matrix. Since L commutes with H, m and A define
If we now take 0 to be the ring of proper transfer both left and right fractional representations for M. More-

matrices, it is easy to see that the above set is nonemPtY, over, a standard function space argument using the usual
as follows, rank coprimenesa for matrices will reveal that A-miu-I

Since ,#, EJP'o)exists Then, from (2.19), is right coprime if, and only if, M- A 'm is left coprime.
Therefore, we may say that m and A~ are coprime without

(g7'(*o)q(ao))1(oo) +4A(00) 'I(co). a qualifier and assume a doubly coprime representation

N ow , if w e letA 
, nl .[ lH- {weHfw(ao)mi!7'(ao)q,(o)) [ -M A i ] (5.1

it follows that, for all well,,, wpl+#,el. In fact, it is without loss of generality. Note, since H-L "x is non-
easy to show that we H,, parameterizes all strictly proper commutative we may have n,-#n'a and/or , i,it.
controllers. In general, one can show that it is possible to In this generalized multivariate setting we would like to
find a controller with C(oo)-A if and only if (p(oo)A + derive explicit solutions of the feedback system design

Aay'exists, and that the set of all such stabilizing problem ST, SR, and STR. To this end we assume that
controllers is parameterized by the set of all w C HA, where the plant P admits a doubly coprime fractional represen-
HA- tation in our multivariate setting while the reference gen-

erators T and R are assumed to admit doublycorm
{weH~w(oo)m(q,(*o)-(c))f(o)p()A. fractional representations

Similar considerations apply to the parameterizations r 1
occurring in subsequent sections of the paper. 1 , , (5.)

V. T H3 M JTU'VAREITE CA M and

In this section we consider the solution of the feedback r 1
system design equations, (4.1) and (4.2), for a class of ' ' - (5.3)
generalized muftivariate system which includes most time- -r r
invariant feedback systems encountered in engineering
practice. To this end we let K denote a commutative ring where t and , lie in L.
of complex valued functions defined on a complex mani- This assumption represents a restriction on our system
fold A which includes the constant function, 1, and we let to the effect that the coprime denominator of the transer
L denote the subring of K composed of functions which matrix T is a common denominator for the elements of r,
are analytic on a submanifold L. Normally, it is the and similarly for R (see (3)). Since the signals to be
complex plane and L is a half-plane or disk with K tracked or rejected are by definition the response of these
representing any of the standard spaces of single-variate operators to a delta-function, our situation is clearly anal-
transfer functions and L representing the subspace of ogous to that in which the signals are generated as the

___________16
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zero-input response of a set of ordinary differential equa- wk - il and xh -P,., (5.11)
tions.

are solutions to the homogeneous equation corresponding
A. Tracking to (4.1).

To verify that (5.11) represents all homogeneous solu-
With the above restriction on the matrix T, we now tions to (4.1) we consider arbitrary homogeneous solutions

proceed to parameterize the set of all controllers which w6 and x6 in H satisfying
solve the problem ST, Le., those which simultaneously
stabilize the system and cause it to track the impulse p,W5 j1 + x; i-O. (5.12)

response of T. As in (6) our approach will be to find a Now, let v,-w j. which yield
particular solution to (4.1), and then to find the general
solution of the corresponding homogeneous equation wk -. 07 (5.13)
Lastly, we show that these are the only solutions. In all
three steps, extensive use is made of the various coprime- and
ness conditions, and of the fact that t commutes with
everything. - pw'fi .-pw t -p,'e .

First we observe that the tracking problem admits a verifying that w, and x are of the required form. It
solutioniand oly ipand t are oprimesee (2)(4)(13). remains to show that o'EH. To this end consider the
The necessity of this condition follows from the skew string of equalities in which the coprimene conditions of
coprimeness condition of Corollary 1-1) since tEL. Con- strin of .7)uae in whic h the onditions of

versely, if p, and t are coprime, then by the discussion t5.4) and (5.7) are invoked along with the commutivity of

preceding equation (S.1), there exist Jj,, j,, and J, in H
such that ' -. W,;' =WAi,'(f,, + I,,)

-wh , -jf, +th'i' 'el,i
- ; -jl (5-4) .

Now, by invoking (2.20) and the fact that " commutes - w ,!I- JX'ft +,w, tef

with H we have -,,; ],-jX, f, +jvwv;'4,Pf,

,,q, - I - -4,,i, - -(,j +UN)#,l, - wA. , -j,,'f, +jwh ,if, r:H. (5.15)

-p,[ -.j, h]j,& . [ -j4,j~i,]; FIt follows that (5.11) represents the set of all homogeneous
solutions to (4.1) and the desired parameterization of the

I .Ipit] , Jt (55) solution space is given by
showing that w--Jeqt+vit and x- -jqtt-Pve,. (5.16)

w,"-4 -and x,-vi andfi x--15,,65.6
wI, - -1i and x - -~J ,it (5.6) Summarizing the above development we have the folow-

are elements of H which satisfy (4.1). ing theorem.
Theorem 3: For the multivariate feedback system of

To parameterize the solution space of (4.1) we assume et th
that E-fl"-  admits a doubly coprime fractional repre- Fig. I let P,. T, and E be characterized by the doubly
sentation coprime fractional representations of (2.12), (52), and

(5.7), with ieL. Then problem ST admiu a olunon if, and

f,6 p, and t are copnnw, in which case the set of
fr -I (5.7) compestors that satisfy the constraints of problem ST is
it" given by

Then C- (-J,4[ip f-(-, + +q,

J#7-' ;et (5.8) (5.17)

and so wherej, and it are defined by (5.4) and (5.7), respectively,
and v is an arbitrary element of H such that the de-

',fic-t. (5.9) nominator of C is in I. Moreover, the feedback system
Therefore, for any oH-L " ',  gains resulting from the use of such a compensator are

linear (afrine) in the design parameter v. a
p,( villit + ( pvel ]i-p,ortt-p,"1e. O (5.10) Finally, since itel, considerations similar to those at

the end of Section IV show that the set of proper con-
verifying that trollers is nonempty.

17
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B. Disturbance Rejection where m, and j, are defined by (5.18) and (5.21), respec-
tively, and z is an arbitrary element of H such that the

The derivation of existence conditions for the solution denominator of C is in L Moreover, the feedback system
of problem SR and the parameterization of the resultant gains resulting from the use of such a compensator are
solution space Parallels the above derived solution to linear (affine) in the design parameter Z. E
-problem ST. For this reason only a partial sketch will be Apan, since a, eI the considerations at the end of
given here First, we observe that the disturbance rejection Section IV are applicable.
problem admits a solution if, and only if, l, and F are
coprime. The necessity follows from condition 2) of C. $utmtaeow Tracking and D&Dubance Rtee.on
Corollary 1. Conversely, if /, and f are coprime there exist
mi, m,, , and A, in H such that To obtain a solution of problem STR in our multi-

variate setting we must find IL simultaneous solution to

, ~ - iii (4.1) and (4.2), using the same w, hence, the same comn
-j P F 0 pesator. Since we already have a complete parameteriza-

tion of the solution spaces for these equations taken
Thus, individually, the solution of the simultaneous problem

reduces to finding values for the arbitrary parameters, o
p,q, q,(A,;+ and :, which yield the same w. In short, upon combining

-p,[q,m,]#t +(p,q,qA,]F (5.19) (5.16) and (5.25), the solution to problem S/R may be

verifying that obtained by solving the linear equation

w , m,, and y, -p,q,, (520) 4 + -j[41 +Of( (517)

for : and o in H. From corollary 1-3) we have the
sati wp r t (4. necessary condition that p, and , and F, and Fand F all

Next we desire to prameterize the solution space of be coprime. Moreover, since T and F are both in L, the
(4.2) when fli and P are coprime. To this end we assume coprimeness condition for i and F may be formulated in
that 4-F - p, admits a doubly coprime fractional repre- terms of elements L and P in L as follows.
sentation Lemma 1: Assume that Land F are right coprime in the

1sense that there exst t,and , in H such that Ujii+V. 1.
b, b [:: , -. (5.21) Then there exist t and P in L such that

-Nowat sL a b '+ff- I. (5.28)

Now, since Proo. Recalling that , and ;4 are matrices, we let t
- p,. a,d, t" (5.22) and P be the (1. 1) entries in t, and P,, respectively. 0

Recall that i-' e, is a left coprime fractional representa-
by an argument similar to that employed in the solution tion of A/'#- ''-.T-; it follows that t -ki, for some

of the trackinS problem we find that the homogeneous ki EH. Similarly, F-an, for some n, EH. We use this to
solutions to (4.2) are given by verify the sufficiency of the three coprimeness conditions

w, -aZ and Y' -at (5.23) as follows.
We rewrite (5.7) in the form

and hence the desired parameterization of the solution vi, -djz-q,m,+1,4,. (5.29)
space for 4.2 takes the form

w-q,m, +z (5.24) Now, starting with (528) and invoking the fact that L
commutes with G we obtainad C (/, -# ,,, (+e, /,

y,-pq,,a# (5..5)
- qm, +j,4,] ik,i, + .. ^4 q.m, +j,4,]

where z is an arbitrary element of H.
Theoem 4: For the multivariate feedback system of - wi,- JZ' (5.30)

Fig. I let P, R. and A be characterized by the doubly ee
coprime fractional representations of (2.12), (53), and wh

(5.21) with FIEL. Then, problem SR admit a solution if, o, -[q,m,+j,4] ik, and -^ ,+j-#n]
and *uY,/ lfitandFare coprme, in which case the set of (5.m1)
compensators which satisfy the constraints of problem SR
is given by verifying that our simultaneous equations admit a solu-

C-[ m+I,z)p, + 4,]-t-(qm, ,z)l,+q,] tion.
To parameterize the resultant solution space, we ob-

(5.26) serve that

. .. ... 1-
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[a,d]i, -,[d,] -0 (532) STR admits a solution if and only if p, and i,,#, and ;, and
t and F are coprime, in which case the set of compensators

implying that which asfy the constraints of problem STR is given by

v, -,d and z, -al, (5.33) C- [.-(qm,)-ff(,4)+a,da,]p,g ] -, 

are homogeneous solutions to (5.27) for all deH. To
verify that (533) represents all homogeneous solutions to ' - +q,) (5.40)
(5.27) we consider an arbitrary pair of solutions e0, and zh where Jr, , in,, a',, : and P are defined by (5.4), (.7),
in H isuch thatw

(5.1 8 (5.2I and (5.28), respectively, and d is an arbitraryli, -azh -0. (5.34) element of H such that the denondtnator of C is in .

We now let d' - J,,, in whichcaseMoreover, the feedback systm gains resulting from the
use of such a compensator are linear (aine) in the design

o -ad' (5.35) parameter d.
Again, the considerations at the end of Section IV are

and applicable.

z',-aj'j -d'i, (5.36) Although we have gone through some rather complex
derivations in the preceding it should be noted that the

verifying that c' and z' are the required form. It remains only mathematics employed are addition, multiplication,
only to show that d' eH for which purpose we invoke the subtraction, and inversion. Moreover, the results of these
various coprimeness conditions and the commutativity of derivations are given in the form of explicit expressions
L with as follows. for the compensators that satisfy the constraints of the

three design problems.
d'-a;',- -(b,a, + a,)a;'a Although the expressio (5.40) in particular looks ex-

-, w +ba,a;'t(i7+r) tremely complicated, most of the terms occurring in it are
1A~ ,fixed transfer matrices; it can be rewritten in the form

C- [(so +,dE,)p, + 4,]-'[ -(go ++,t5,)j, 4q,]
'*S~~ 4ba~d'5,nv~For even in the form

4 b~a~ 'o 2 iAt~b~adr ~Cm(S, dg2 +g,) -'(:,.dg5 +g.6)

-Sevk +b~anehF+b~az,*447i where all of the g, are fixed tranfer matrices.

+ b,a,aoif,: VI. E,,

-,v t +ba,.n,o' +b,a,4, t7 To minimize repetition, our frst two examples are con-

+b,azA4f, iE=H. (5.37) tinuations of examples begun in [61, where the coprime
fractional representations employed below are computed.

Consistent with the above, the required parameterization
for the solution space of (5.29) is given by A. A Singl-Varate Tracking and

Dishubance Reection Problemv- [ q,,,, +,4,] ik, + a,d
Although the stingle-variate case is already well under-and stood, the theory is most readily illustrated in this ce,

z- -n,P(q,m, j,4,1 +di, (5.38) and hence we begin with a single variate example. Here,
the plant is taken to be

which upon substitution into (5.16) or (5.25) yields t

,,1() ;-[ 41) - [ (*+2)2 (s-2) -'
-qm, -FP[ qm, +j,4,] + J,di, [(2) [6.(2

- R(q,m,) - f(J,4,) +a,dI,. (3.39)
where

We have thus proven the following.
Theoren 5: For the multivariate feedback system of r16 (S[ (1)1 + (*42/3) ir(s-2)1

Fig. I let P, T, R, E, and A be characterized by the T (,+2)2 ] (s+2) (s2) I
doubly coprime fractional representations of (2.12), (5.2)
(523), (5. 7), and (5.21) with F and ;in L. Then, proble m -q(s)p (*) ( )- 1. (6.2)

it, 19

* aL



imm Tum.uCTIONS Ow AuTOMATIC COhToDL. voL Ac-26. tO. 1. MIIUAIY 1981

Of cours, since the single-variate problem is commutative i
these q's and p's yield a doubly coprime fractional repre- h,,(s)- Ip !$ +1 6s +16 (s-z).vs)
sentation in (G, H, 1, J). Here G is taken to be the ring o 3

proper rational functions and H is the ring of rational (6.9)
functions whose poles have a real part which is less than and
- I. Thus, the theory will yield "strongly stable" systems
in the sense that their poles will be bounded away from h
the imaginary axis Moreover, since the theory uses the q (h+) [s(#-2)(s+2/3)(slX-2)o(v)]
same stability concept for the tracking and disturbance I I

rejection problems as for stabilization, the resultant solu- (6.10)

tions to thes problems will be "strongly asymptotic" in in terms of the design paramet r (s). Note the zero at
e sam nsde. zero in h,6 (s) assures that the system will track a step

Now, let us consider the problem of tracking a step function as required.
function. Hen we lot Now, let us consider an alternative tracking problem

TIS -I I [ s i where we are required to track e-21U(t). That is,
J(s+) s2) T(sf)- = [ I J_ IF ][ (s-2

-t(sAJ)-' (6.3) [(s-2) s 2) (s+2)]

where - t(:)i(:)- (6.11)

4(s+1) i[ 1 [ ) L(where
I(s+2) (s+) 52) 11+2 (s+2)1 :2[4] (s-2)-u,)~j+D.s)',)l.(6.4) 4](J+2)] +2 )]

Moreover, 
U(s)t(J)+i(s)i(*) (6.12)

~41f(.s~) 1 * ir * 1and
(34.,2)2 (.t+2) jj(s42) L6 ]I (s:41)1+ [(:2/3) ir(j-2)1

-j(:)pOs)+()(,1)- (6.5) 3 (j+2)2 (s+2) J'Ls2)1

verifing that p(,) and (:) are coprime and, hence, --(s)p(:)4is)i()--. (6.13)
assuring the existence of a solution to our tracking prob- Thus, p(s) and i(s) are coprime and we may proceed to
lemi. To compute the solution we define construct the desired set of compensators. For this pur-

F(:-2) s - pose we define a system E(s) by
[(42)1 (j2)1 [(2)-J()i()') J[ (.1-2)]-t

(6.6) (s42) (*42)

Where -A.-[I][l]'-~~~) (6.14)

[-I I[ (s-2) J+(23[ s hr1(2) 1 (j42) . .0(](31.A)()A)()uI

-f(),)() (u)- 1. (6.7) (6.15)

From 5.16 we then have Note that in this example (:() and i(s) are not coprime.
This is, however, not necessary as long as we can con-

(J) -- j()4(s) +o()i) struct a copuime fractional representation for ther ratio,

[(,2/3) 1 * E(s). Finally, substitution into (5.16) yields
-, -4 s + ( o(s). (6.8)1 1+1 W(. [ 16(s+2/3)1+o(,) (6.16)

Substituting this value of w(s) into (1.11) and (1.12) we 3(j+2)

obtain the system anwhle
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and h4,(a)- (j-2) [(s+2)(3s2 -8s- 12)+3.s(s+ l)z(s)].

A(S) - (s-2) 
3(+2)"

9(t +2)' (6.26)

.[(9S3-6SI -20s-8)+9(+l)(+2)o(s)]. (6.18) Here, the factor of : in the numerator of h,.(s) indicates
that the feedback system will, indeed, reject step func-

As before, the (s- 2) factor in the numerator of the h,,(:) tions. Moreover, as we have previously indicated, any
verifies the tracking property. Also note that as v(s) spans stabilizing controller tracks e2'U(t) as is indicated by the
the set of "strongly stable" functions so does w(s). Thus, (s-2) factor in the numerator of h,,(s). Interestingly, if
every compensator that stabilizes the system in our sense we apply our theory to solve this simultaneous tracking
also solves the tracking problem. Although redundant, the and rejection problem we obt i an equivalent, but more
extra term in (6.16) complicates our expression for C(s), complex, parameterization of the desired feedback sys-
h,,(s) and h,,(s) and should be eliminated if possible. In tems. To this end we let
our theory this would be achieved by choosing more
opportune fractional representations for the various func- [2] +[-1] (s+2)
tions with which we deal. [T (:42) J s2

Now, let us consider the problem of rejecting a step -F(:)F(:)+I(s)i(z)-1 (627)
function for which we let

and obtain

J 1(-(+2) ()+2) W(S) i( )q(J)m() (s)

"r()i( ) -  (6.19) ()P()j()4() +

whee 2 1 + ±s+4 + S(s+2)d(s)l
- I f I 3 3

(s+2) I(s2)1 (+2) (s+2)8
=S(:rs.-()~)l 60 h,(s) S + (s - 2)(s + '--,-,-**/

Here, (6.29)

[2 [-s]_] (1-2) and
s+2 ),( r +) :( -2) ]... (6-21))hs(:- (61 9(s+2)' (9s' + 12j 3 +321l - 1121- 144)

showing thatj() and F(s) are coprime. Next we compute +9s(s+ l)(j+2)d(:)]. (6.30)

A~s~p(:P~s'm[(s I1) ir s Equations (6M8) through (6.30) represent a complete
(j+2f (j+2) parameterization of the simultaneous solutions to the

tracking and disturbance rejection problem where d(s) is

(6.22) a desig parmeteer which may be chosen to "optimize"
some other aspect of the feedback system design. For

and instance, if we would like to create an additional zero of
hj,() at i -I we let d= - 36.74 and obtain.] (s l) + s •

[4) (.1+2)1J [(.+2) (:4.2) 1H"(S)uI s1 (1280*2 +76s-2048). (6.31)
27(s+2)'

(6. B. A Multivaatae Lumped-Disirbuted Disturbace

obtaining Rejection Problem

w(:) q(S)m(S)+J(s)z(s) We now consider a lumped/distributed multivariate

6]+ [~23z(:) (6.24) plant
3" (s-i))

h,(S)- + l2(,+ 2)-(:- 2)z(s)] (6.25) (sS) (6.32)(s, )T 3 ( P(.r),

and 21 (,-)

a. .... _ ...... .. ....+-, "N_="-, - --,__. .. _,+_._+__ .J,..
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which is included in our axiomatic theory by taking G to Of course, since the r's and s's are all commutative (635)
be the ring of 2 by 2 matrices whose entries are L. defines a doubly coprime fractional representation for
functions on the imaginary axis and H to be the subring R(s).
of 2 by 2 matrices whose entries are H. functions on the To solve the disturbance rejection problem we must
imaginary axis. We woul" like to design a compensator now verify that ,# and F are coprime, for which we have
for this plant which will simultaneously stabilize the
feedback system and cause it to reject the sinusoidal input 1I
sin(t)U(t). To this end we obtain a doubly coprime frac- 0 1 0
tional representation

- 0 2 0 (3-1)
1 0 ' 0 0 0 -+ +)1)(I+
o 1 '0

-, , J - (s+I) (,+1) 0 (s+ i)0 (s-)+ (s+3) 0 (s2 + 1)
(s+l) (s+l) L (+ Jl (+1)2

0 0 -2
(s+ 1) ,As before, these matrices are all commutative and thus

- (-- - --) 1 2(- - 1) define a doubly coprime fractional representation for our
(s-l) problem. We then defme

(s+1) (1+1)" (s+l)

0 0 1 - 1l0(3 + 1) (3- 1)2

(s+1) (:2+1) (: 2+1)

S(6.33) A(t) -p,(s)() - (s+l)[) (2+1)

and we let -, /
, (s-1)2  (t +!) 0 ]

1I-- L  (:t+l) (s+ l)2  t,+ l)"

1 0 +

A(s)+ (l 0 (S2+ 1)

( + 1) -a,()J,(s -  (637)

(2 +1) which is right coprime. Of course, we can also formulate a

(+ 2- 2 0 left coprime representation for A(t) along with the ap-
propriate b's required to construct a doubly coprime

01 0 (S2 +1I..) fractional representation. For the present purpose, how-

(s+ 1)2 (S+ 1)2 ever, all that is required is a,(j) and hence we will not
derive the remaining a's and b's. Substituting q,, m, and

(6.34) a, into (5.5) now yields the required set of w's for the
where solution of problem SR for our lumped-distributed multi-

](s[) 0 1 0 (s+3) [ (2+1)0(J+ 1) (S1) + ( t+ l'-'j ( t+ )l

0 2(s- 1) 0 1 0 (s+3) o
( 0 + )" s)+.(s+l) . ((+ 65

- (sr( )+ () ( - I.(6.35)
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variate system.

w() -q,(s)m(s) +J,(s)z(s) +[ o a, 1 J
-+ (S2 +1) Z(s) Fi. 3. P, iodicay vasying feedback sys

(.1)2 (*.f) the ring G, composed of 2 by 2 matrices of rational

(638) functions which have the form

where z(s) is an arbitrary stable matrix. Finally, substitu- P(Z). r(z 2 )4+.2(Z2 ) P,(Z2 )-ZP(Z t )
tion of this w(s) into 1.10 yields the required compensator --- +p
while the input/output gain for the resultant feedback
system takes the form (6.40)

1 where P, i- I, 2, 3, 4, are rational functions. As usual, the

0 2(s' + l)(s+3)(s-1)2 stable systems H are taken to be the subring of G corn-
(I+ 1)s  posed of functions which are analytic inside the unit circle

h,"(S) of the complex plane. All of the constituent components

2(04+ 1)(1+3) of a discrete-time system of period 2 can be modeled byJ+)such matrices and the usual operational calculus for inter-
connected systems remains valid [5L (g]-[111. For in-

*-t/ (~~)2 ]stance, a constant scale factor with gain k is modeled bye-'/" (4-1 Z tl(J) Z,2(j) the matrix
[(*4.1)~~~ (0.) ~)[ ] (6.41)0°, 1°,> Z2()Z2 W 1

0 (4+1) J--- while a single-variate time-invariant component is mod-
eled by

(+1 ) 0 P(z)m[ 7 z) O  ] (6.42)
(J +s 1)(3 • (6.39) 0 71:)

0 ( 3+1)3 where 7Xz) is the usual transfer function for the compo-
(s+I)3  nent and T(z). -T(-z). Finally, the periodically varying

multiplier defined by
Note that the factor (s2+1), in the numerator of h,,(s) Yk )k
implies that the feedback system will reject the required uk (6.43)
sinusoid, while choosing z21()- 0 will preserve the desira- is modeled by
ble triangular nature of the plant.

C A Periadcally Varying Discrete-Time Tracking Problem 1 0

Although time-varying systems are not traditionally Now, consider the periodically varying feedback system of
viewed as multivariate, the class of periodically varying Fig. 3. Here, the plant is a time-invariant system with a
discrete time systems admits a frequency domain theory parallel time-varying gain and it is thus modeled by the
which closely resembles the classical multivariate theory. transfer function matrix
In fact, we can apply the results of Section V to this class
of time-varying systems. Although it is not well known in 1
this system theory community, the frequency domain the- P ) (24.z) 1 6.45)
ory for periodically varying discrete-time systems has been P z I
rediscovered by a number of researchers over the past (2-z)
quarter century in one form or another [5], I8-11]. The
basic theory, however, always employs an n by n matrix of Since this system is stable (its poles are located at z- ±2),
z-transforms to model a single-variate system of period n. we may obtain a doubly coprime representation for P(z)
For the present example we will take n - 2 in which case a by letting p(z)-P(:), j(z)-1, q(z)-0, and 4(z)-I.
single-variate system is modeled by a transfer function in Since these matrices are all mutually commutative p(z)
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may serve for both p,(z) and p,(z) and similarly for the Since E(z) coincides with T(z) we may let e(z)-t(z),
remaining p's and q's. i(z)-i(z), f(z)-s(z), and 1(z)e)-(z) define our doubly

Let us now consider the problem of designing a corn- coprime fractional representation for Ek . . Substituting
pensator for this plant which will cause it to track a into (5.16) we obtain
prescribed input without destabilizing the system. For this
purpose we take z(15_6:2) (15_6Z)

[ I 0 4(4-Z2)(2-:) 4(4-z2)

1 z)) (6.46) (15-6Z2 ) -:(15-6z:)
0 4(4-z') 4(4--z2)(2 +Z)

0 (I _z2)2 I

which generates an input which oscillates between zero V(z 2)+O 2(Z2 ) O3(Z 2)-2 4 (Z 2 )

and a ramp. Here T(:) is unstable (since it has poles at +
± 1) but its inverse is stable. Therefore, we may form a VA(Z )+ZV4(Z )  V(zZ)_ZV(Z )

doubly coprime fractional representation for T(z) with

t(z)- I,r

(z)- ( _Z2)2 0 (6.47) (1 _Z2)2 0 (6.50)0 (1-Z 0 (1 -z")'

s()- 1, and i(z)-0. Now .
r 1 which dermes all compensators which satisfy the con-

S I straints of problem ST where the v, are arbitrary stable
(2+:) rational functions. To construct an, example of a corm-

-Z pensator we take v,-0, i-1,2,3,4, which yields a w(z)
I which is just. the first term in (6.50). Substituting into

(1.10) we obtain the compensator

Z(l5-6Z2) (l5-6Z2) ' 1 1
4(4-:2)(2-:) 4(4-z) I (2-Z) (156z)(4-Z2)

(15_6:2) _(15_6z 2 ) . 1 (2+" 2

4(4-z2) 4(4-:1)(2+z) (6.51)

0- 2?1 Interestingly, this time-varying compensator perfectly(1z) 0 ---- I0 cancels the time-variation in the plant yielding a time-

+ (4-2)2 invariant open-loop gain and time-invariant feedback sys-
0 (I -z2)? 0 --- 1 - temrns in the form

(4-z'?2 (15-6z2) 0

=e( )j,( ) + ( )j~l(z) = 1 (6.48) (4 _ 2) 2
and hence p(:) and i(z) are coprime, verifying the ex- (15_6( 2 )

istenae of a solution to our tracking problem. The final 0

step required to obtain the desired compensator is to (4 - z
compute ""

E (z)- A z( );( )- I " (1 -_ )'-" h ,( ) . (I-_ Z2"2 (6.53)

01 " 0 (1 -2 )J

(I _())-"--) (4-z2) 2

(6.49) Here, the (I _z2)2 factor in A.(z) indicates that the
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The main problem of adaptive control theory is to For any arbitrary w, let the compensator C be
design a system S which is capable of automatically defined as
adjusting the generated control input to the plant P.
Such adjustments may be necessary for a variety of C-(wMdl+Vr)' 1(-WOl+Ur). (.6)
reasons, such as Insufficient knowledge about the
plant, plant perturbations, etc. A multitude of adap- It was shown that if wcH, then the input-output map h
tive control techniques have been proposed through the also belongs to H and
years. A characteristic shared by all of them is the
presence of some means of identifying the unknown or h-N (-wO +Ur). (1.7)
perturbed plant. Of course, the design of such a r I r
mechanism, termed here the identifier, is an important An important element of the approach is that it
question in its own right. The design, however, of an provides a complete characterization of the set of
adaptive controller is heavily influenced by the par- compensators which place h in the ring H. It is there-
ticular technique used to generate the control and it fore desirable to investigate the conditions under
therefore inherits the technique's features, which fractionally represented feedback system can be

adaptively controlled.
A recent advance in control theory is an approach

to feedback control based upon the representation of Suppose then that either in the limit as t-. or
the plant as the ratio of two operators, both of which for all times t i t1, an input-output map H in I is
belong to an operator ring H. (Ref). A brief overview desired; In other w;rds, suppose that, with the appro-
of the approach is as follows. Consider the following priate time interpretation, it is required that
ring structure R

R - (G,H,7,1) (1..1) h-H. (1.8)

where G is a not necessarily comnutative ring with Clearly, there exists a choice of three independent
identity representing the general class of systems of variables, namely w, U and V, to satisfy two linear
Interest. The subring H also contains the identity equations. The decisign was lade to consider w as a
and represents the class of systems which in some sense parameter in H. Thus the problem can in general be
are stable. I is the set of elements in H which admit stated as seeking the particular coprimeness operator
an inverse in G and J the set of elements in H which pair UrVr which for a given w in H simultaneously
admlt an inverse in H. As shown in (Ref), satisfies tq.s 1.4 and 1.9.

G = H = 1 m J (1.2) The two main problems to be addressed here are tne
A plant P is said to have a doubly coprime acquisition and the plant-follower. In the former,

fractional representation if for the linear, time-invariant plant P is assumed to be
{NrNiUrUlVrV 1)c H and {D r.01)c I insufficiently specified at the initial time to. The

intention is to provide a feedback system S which
P-ND -l IN1 (1.3) consists of an identifier I. and an adaptor AD asshown in Fig. 1.2. The identifier provides the adaptor

with estimates p(t) of the plant P such that
Ur 4r+VrOr- 1 (1.4) lim p(t) - P. Then, using these estimates, the adaptor

N1Ul+D 1V1 -1 (1.5)

The aim now is to design a system S so that the 1
system's inout-output map h is placed in H. Consider
the system shown in Fig. 1.1 and assume that P has a
doubly coprime fractional representation.

X C 

Fig. 1.?. An adaptive control system.

Fig. 1.1. A feedback control system. provides the compensator with an operator pair

(ur(t),vr(t)) such that the required coprimeness pair

This research supported in part by the Joint Services Electronics Program of Texas Teth University under
ONR Contract 76-C-1136
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r(Ur,V 3 is obtained in the limit. The first task is
to delineate the class of plants for which such a
system is possible. This can be done by deriving the
necessary and sufficient conditions for a solution to
exist under the assumption of instantaneous identifi-
cation. (i.e., a perfect identifier). Then it would
rmin to show that in the non-ideal case the solution
can be attained adaptively. In other words it would
be required that Eq.s 1.4 and 1.8 are satisfied in
the limit.

In the plant-follower problem the linear plant P
is perfectly known at the initial time to, but it
undergoes perturbations thereafter. The intention is
to provide the compensator with an operator pair
(Ur(t),Vr(t)) such that the systems input-output map
remains invariant under..the plant's perturbations.
In other words Eq.s 1.4 'and 1.8 are to be satisfied at
every point in time. Again the class of plants for
which a solution exists is delineated under the per-
fect identifier assumptions- In the non-ideal case it
is desirable to examine the extent to which the input-
output map is perturbed due to the plant perturbatiom.

As Always, stability is a question of paramount
importance. A consequence of the fractional represen-
tation approach is the fact that a system is stable
in the sense of H whenever the system's input-output
map is time-invariant and the coprimeness operators
belong to N. This is exploited in the ideal case of
both problems. But, whereas, in the acquisition prob-
lem the derived stability conditions are time-inde-
pendent and hence easy to rheck a priori, in the
plant-follower they are time-dependent and thus the
task of verifying whether they hold or not is consid-
erabley harder. However, the problem is by-passed by
showing that in this ca~e the question of the coprie-
ness operators belonging to N is equivalent to the
classical question of stability in the sense of N of a
system with time-invariant feedforward path and memory-
less, time-varying feedback path. In the adaptive
case of the plant-follower problem stability is re-
solved by a similar criterion applied to the entire
adaptive acquisition problem, the fact that the input-
output map converges to a time-invariant element of i
suggests that the system is stable as long as the map
remains bounded. It is shown that for uniform asymp-
totic stability this is in fact the case as long as a
sufficiently *good' identifier is used. (The quality
of the identifier is also shown to be related to the
robustness of the adaptive plant-follower system).

The requirement to control the entire input-
output map restricts the application to a class of
plants which, for all practical purposes, is only
slightly larger than the miniphase case. But if a
less restrictive requirement is imposed the class be-
comes considerably larger. The point is demonstrated
by the pole positioning problem for plants represented
as rational functions (not necessarily proper). It
is shown that the problem is equivalent to solving a
linear, algebraic equation. Furthermore, a solution
to the equation is shown to exist provided that the
number of poles to be positioned is sufficiently large.
In terms of adaptive control, the equation must be
solved repeatedly in time by any of the available
methods, (e.g. a continuation algorithm).
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SUBOPTIMAL CONTROL WITH OPTIMALr

QUADRATIC REGULATORS-

C. Karmokolias ** R. Sacks

Texas Tech University

Abstract

A now approach to the design of Moreover, the on-line computation needed
muboptimal controllers for constrained, to implement the system is greatly re-
nonlinear, decentralized, and non-quad- duced from that which would be required
ratic systems is presented. Here, one for an optimal non-linlar controller.
designs a quadratic regulator for an
idealized system but chooses the weight- The basic steps required for our
jag matrices for the regulator to opti- proposed design procedure are:
mize its performance as a controller of
the actual system relative to a pre- i. Approximate the given (nonlinear,
scribed (not necessarily quadratic) per- interconnected, or constrained)
formance measure. The approach is illus- system by a linear state model.
rated via several examples. ii. Design a regulator for the approxi-

I. Introduction mate state model which minimizes a
quadratic performance measure with

Historically, the control system de- . we;ghting matrices Q and R.
signer has been faced with the dilemma:
"Should he work with an idealized model iii;. Evaluate the performance of the
of a system which is amenable to simple actual system using the above quad-
solutions or a "real world" model which. ratio control strategy.
may be intractable?" The former approach
is epitomized by the LOG school wherein iv. Optimize the performance of the
a highly idealized model of a real world actual system under such a control
system yields an easily implementable strategy as a function of the
analytic control theory (11.12). Alter- weighting matrices Q and R.
natively, a more realistic model may be
employed in conjunction with a nonlinear As is the case with any "real worlds
programming algorithm at the cost of a design algorithm, its effectiveness can
more complex implementation and increased be measured only by its performance in
computer requirements (2,3). engineering practice. As such, the re-

mainder of the paper is devoted to a
The purpose of the present paper is series of examples in which the above-

to describe an intermediate approach to described design procedure is applied in
the control system design problem, a variety of settings and compared with
(4,5,13) wherein one designs a quadratic existing design procedures. The examples
regulator for an idealized system but include three tracking systems, a case of
chooses the weighting matrices for the control under input constraints and a
regulator to optimize its performance as case of decentralized control.
a controller of the actual system rela-
tive to a prescribed (not necessarily 1I. Tracking Systems
quadratic) performance measure. The ad-
vantage of such an approach is that the To illustrate the design procedure
resultant regulator has the same "ease we begin with a simple first order
of implementation" and most of the "sta- tracking problem. Here the system dynam-
bility characteristics" associated with ics are
the classical LQG problem. The disadvan- ; (t) + • X (t x 2.1
tage is that the system performance is
Suboptimal. Computationally, the process
does not require any more effort than The optimal input u*(t) minimizing
required for a nonlinear optimization. the quadratic index

*This research supported in part by the I * ( Cqx2 (t) u2tt)] dt 2.2
Joint Services Electronics Program at is
Texas Tech University under ONR Contract
76-C-1136. u2(t) - -P(qt) a (t) 2.3
"Presently with the Rearfott Div.,Singer
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where P(q,t) is the Riccati equation the state trajectory approximates its
solution. Hence the optimati state tra- requirement better and better. Thus the
jectory is given by regulator is "instructed" to emphasize

the input cost by decreasing q, which
then causes the input to decrease and

(t + f P(qo) d) thus approximate its requirement better.
X*a 2.4 Then, since a scalar stable system with

a quadratic regulator is always bounded
by its natural response, which in turn

We now seek the weight q* which is always bounded by the initial condi-
minimizes a given performance index J " tion, the best approximation to the x-1

2 requirement that the system could ever

achieve for O<x L is its own natural
Ce 1: 1*x(t)] 2 + tu*(t)32 dt' response. Thus for this range q*-O.

For xo-0 q* is indeterminate since both
The trajectories required by JZ state and input are identically zero.

and typical regulator trajectories Once x becomes slightly negative, the
are shown in Fig. 2-1. Obviously q* o
depends upon x0 . On the other hand, regulator is instructed to drive the

state to zero as fast as possible be-
finding q* given an x0 is not always cause the state can now only add to the

trivial (refer to Fig. 2-2). error. However, as x. becomes more and
more negative, the effort in driving the

' state to zero becomes significant also
and hence q* approaches unity. Table 2-1

.shows that the present approach holds an
uttl .advantage over the competitive approach

_______. I with an optimally chosen constant gain

7 . . Table 2-1 Tm*-evsrlaut Vesu Tts -Vwlrant OptI Design m 1

-Amuted Trifeee; a b.Jf..1II""G

-- ? Te ~~1.0 1.0 0.0 0.0 IM0.1 - I
LO .04.03 0.10 0.19672 0.N=0 S-

4.0 -O.175S 0.3 .L.1 LIZ 0."
fig. 2-I OIIOe end rI CAl PrVAF e-.CAs I SO. .4.0s a." 914.sm l11.100 0I.l

As xo-+PO, q*- 1 because for x Case 2:

being very large, (x(t)-l) =x (t) and

thus equal importance is placed upon Required and typical trajectories
the state and the input term of JZ" As are shown in Fig. 2-3 whereas the depen-
xe goes to zero from above, dence of q* upon x is shown in Fig. 2-4.

Once again, to benchmark our results,
Table 2-2 compares the present approach

fe to optimally choosing a time invariant
gain h. A noted improvement is obtained
for Xo-l, the advantage becoming less

profound as Xe gets larger.

t.0 2.6

1.- ji1 (, - t - x*(t)22 + Cu*(t) 2) dt

.i. .. .0 l. 10 •.

fig. 2.3 Tariatieft of 4 Wih uo.Cae I
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with x2 (0)-0 and x1 (0) variable. Our

goal is to design a regulator for the

J 20 Cxt(t)Qx(t) + u2(t)3 dt 2.8

so that the measure
, -- (IL(t) - 0.0tl + O.0011e(tl) dt

S 0 C 02t) o.Zt -41 * o@OJu(t) dt 2.9
. 0

is minimized over the diagonal matrix
0. The optimal designs are plotted
against xl(0) in Fig. 2-6. Optimal

trajectories of x2 (t)

1.0

0 10 20 14

nog. 2.5 SesIni 1rIAMP,1te9 i

41. 0 .. 0o 1.3 2.2

Fig. 2.4 Yfeatilm of q- wthz*-CM Z.
,a

156124 11tM IinW4eat vMS Time Vata t OKIUI Oui0gM n--e 2

1.6 4.,31 0.26 0.0"19 .02a? 1IZ.:/

2.6 4.*a 0.5 .15001 . 6.24 GA

.64A 0 6.10 2.4114 2.81M0 1.."

As a variation on the tracking prob-

lem, consider the design of a pulse
forming system whose output is required
to approximate a triangular pulse. Speci-
fically assume that x2(t) is to approxi- U M ,...

mate the pulse shown in Fig. 2-5 where .2""'4
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A 1 A Safety Conditions

(1) The angle of attack O(t) must be
less than about 180 and not considerably

are shown in Fig. 2-7. It is perhaps of negative.
interest to note that as x1 (0)-+.o , the

(2) At touchdown the airplane must be on
control is dominated by Ql causing the runway and within a distance d from

x2 (t) to be regulated through its deriv- the runway's start.

ative. (3) At touchdown the rate of descent

h(T) must be between -1.75 ft/sec and
II. An Aircraft Landing Problem 0.0 ft/sec.

A four state model (4) At touchdown the pitch angle 0(T)
must be within 00 and 100.

x(t -'F(t) + Gu(t) 3.1
Comfort Conditions

.for the landing of an aircraft was pre-
sented in (1,2) and was used in (3) to (1) Avoid all accelerations.
treat the same problem with dynamic pro-
gramming. Although somewhat simplified, (2) Avoid a "hard' landing.
the model is adequate for illustrating
our technique. (3) Avoid a negative pitch angle.

*The states are defined in terms of
the aircraft's coordinates and angles as The underlying assumption is tat
(refer to Fig. 3-1). safety takes precedence over comfort and

thus should any of the safety conditions
x(t)-(e(t),9(t),h(t),h(t)), 3.2 be violated, J_-C. It is noted that the

selection of a matrix Q to satisfy these
whereas the input u(t) is the elevator conditions is not a trivial task.
deflection angle 6e(t) which is mechan- It was shown in (4) that stability

ically constrained between -350 and 150. considerations for the nonlinear model
Consistent with our suboptimal design lead to the establishment of an upper
approach we will initially neglect this bound for Q. In particular, if F is in-
limiting effect and design a quadratic vertible and P(Q,t) the Riccati equation
regulator for the linear system but we solution, the upper bound on Q is estab-
will choose the weighting matrices so lished by
that the behavior of the actual nonlinear
system is optimal relative to a perfor- R-GTp (Q)F'G 3.3
mance index J . This index is chosen to
simultaneously achieve a safe and com- where P(Q)nlim P(Q,t). The landing was
fortablo landing. The complexity of the simulated on an IBM-370 and for an
resulting 3 is such that rather than initial state
giving an explicit description here we
will only list some of the factors en- x(0)-(0.0,-0.0181,-20.0,00.0) 3.4
tering its formulation. The interested
reader is referred to (4,5) for the the optimal matrix Q was found to be
details. 3.5

diag~ot*(21.0,21.0,0.0016,0.00047).
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The resultant optimal input and To illustrate the approach we con-
elevation trajectories are shown in sider the system
Figs. 3-2 and 3-3.x(t 

Fx(t) + Gu(t) + Fx(t); x(t) X x0  4.1

where F and G are block diagonal matrices
Ncharacterizing the decoupled system com-

- _ _ _ tw " -"ponents and H is a coupling matrix.

For our example we take
-0.10 0.05

.0 . 0.10 0.

- .0 0

----~ -- " . 0 -0.01 0.0
0

- 0.05 -0.08
" F 0"101 0 0 4.2

0j0=, 0 4.3

* . 0 5

I

A and

WAoI o Io.o oo (oI. ~

-_L - _ 7 o.o6 .OT .
a- 1 0 . 0 .v0, . 0 0.0

, 4S U* If o.o 0.0 . 0 0
0.01 0.01 .0 0.0

IV. Decentralized Control o.0 o.olo1.o 1 0.

The dimension of a large dynamical
system is often so large that control on We now approximate the given system
a global scale is prohibitive due to ex- by the decoupled system
cessive requirements on computer storage
or time. In such cases it may be desir- i(t) - Fx(t) + Gu(t) 4.5
able to consider the system as a collec-
tion of subsystems S.,i-,2,...,N and and design a decoupled regulator which

control each subsystem separately. Sev- minimizes
eral schemes have been suggested varying IQ
from ignoring the subsystem interconnec- J a, ( t (t)QX(t) + ut(t)u(t)] dt 4.6
tions to providing a separate control to
neutralize their effect (6,7,8,9,10). where Q is a block diagonal matrix.

As an alternative we adopt our sub- This regulator is then used to control
optimal approach to control system de- the coupled system of Eq. 4-1 with Q
sign. Here the given interconnected • chosen to minimize the global perfor-
system is initially approximated by a mance measure
decoupled system for which decoupled qua-
dratic regulators are designed. These u0
regulators are then employed to control CXI[t) x(t) ,(,) u(t)l dt 4.7
the coupled system with the weighting
matrices being chosen to optimize the
performance of the resultant coupled
system relative to some performance mea-
sure J I
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The resultant optimal Q was found (5) C.Karmokolias and R. Saeks, "Subop-
to be t timal Design of an Aircraft Landing

-- System", Unpublished Notes, Texas Tech
o.5 0.o 0 0 Univ., 1979.

(6) M.D.btesarovic, D.Macko, Y.Takahara,0.0 0 _ "Theory of Hierarchical Multilevel

Q* 0 -0.5 0-0 I 0 4.1 Systems," Academic, New York. 1970.0 (7) F.N. Bailey, F.C. Wang, "Decentral-
O  q- -O - - - -  -- : ized Control Strategies for Linear

0o.0 0.0 1 Systems," Proc. Sixth Asilomar Conf.0 I0.0 1.5 Circuits and Systems, pp. 370-4,

0. JNovember 1972.
(8) T.Ishimatsu, A.Mohrij M.Takata,

it is interesting to compare the "Optimization of Weakly-Coupled Sub-
above described approach to the so- systems by a Two-Level Method," Int. J.
called "naive" scheme where the couplings Control, Vol. 22, No. 6, pp. 87782December 1975.between subsystems are totally ignored.
(To the contrary, we design decoupled Mult ilat of areSale
regulators for each subsystem but choose Multilevel Optimization of Large Scale
the weight matrices through a minimiza- Dyhamic Systems," IEEE Trans. Auto.
tion of J where all the couplings are Control, Vol. AC-21, No. 1, pp. 79-84,
included). In this particular example February 1976.
the naive approach yields a J =6.590, D.D. Siljak. Large-Scale amic
whereas our algorithm yields J -6.349. (10)a 3.8 percent improvement. Systems, Stability and structure.

North-Holland: New York. 1978.
V. Conclusions (11) A.P. Sage. Optimum Systems Control.

Prentice-Hall, Inc: Englewood Cliffs,
Our purpose in the preceding has N. J. 1968.been the for tin ofe arene a h (121 B.D.O.Anderson, J.B. Moore, Linearbeen the formulation of a new approach Optimal Control. Prentice Hall: New--"

to the suboptimal control of nonlinear, Jersey. Coto.
constrained, decentralized and non-qua- Jersey. 1971.
dratic systems. In essence we restrict (13) C.Karmokolias, R.Saeks, "Optimal
ourselves to a subclass of controllers Selection of Weighting Matrices in
by assuming that our controller will take Kalman Regulators," Proc. 21st Midwest
the form of a quadratic regulator for a Symposium on Circ. and Syst., pp. 72-6,
linear approximation of the given system. August 1978.
We then choose a particular regulator so
as to optimize the performance of the
given system within our class. The ad-
vantage of the approach is the relative
ease in implementing the resultant con-
trol strategy and the stability inherent
in the use of a quadratic regulator. The
disadvantage is the suboptimality of the
result and the computational effort re-
quired to choose the optimal weighting
matrices.
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FRACTIONAL REPRESENTATION, ALGEBRAIC GEOMETRY, AND THE
SIMULTANEOUS STABILIZATION PROBLEM *

R. Sacks and J. Murray
Department of Electrical Engineering

Texas Tech University
Lubbock, Texas 79409

ABST!.ACT

An exolicit relationship between the fraction- using a proportional compensator with gain t. This
al representation approach to feedback system de- results in a system with characteristic function
sion and the algebro-qeometric approach to systen
theory is formulated and used to derive a global d(s) • s + (B + tA) (1.2)
solution to the feedback system desiqn problem.
These techniques are then applied to the simul- and. as such, the feedback system will be stable
taneous stabilization problem yielding a natural if and only if B + tA > 0. Here, for a given
"eometric criterion for a set of plants to be sin- compensator. t, the feedback system will be stable
ultaneously stabilized by a sinnle comDensator. if and only if the point (AB) lies above the line

with slope 1/t as shown in figure la. As such, if
1. SLNtIARY we want to simultaneously stabilize an entire set

of plants their representations on the A-8 plane
Classically, in control theory one is given a must all lie above a line through the origin. For

plant and desires to design a control system instance, the set of plants indicated by the hatch-
around this plant which meets certain design ed region in figure lb. can be simultaneously
specifications. In fact, however, a "real world" stabilizefT (by a compensator with gain - y) while
plant is never known exactly and, as such, a rea-
listic design must simultaneously meet specifica the set of plants shown in figure lc. cannot be
tions over an entire range of plants which simultaneously stabilized since they subtend an
(hopefully) include the actual plant. The simplest angle greater than 180 degrees on the A-B plane.
form of the resultant adm htt ou6 de An pwbtv., Similarly, the set of plants shown in figure ld.
is the AobuAa detign pwbiu wherein one desires cannot be simultaneously stabilized since they
to meet the design specifications in an c-ball cross the negative A-axis.
around a prescribed nominal plant. Although this
is satisfactory for dealing with modeling Orrors The example suggests two alternative criteria
it cannot cope with plants containing unknown for the simultaneous stabilization problem. One
parameters and/or plants characterized by multiple may adopt an algebraic criterion to the effect
modes of operation. For instance, the dynamics of that
an airplane or rocket vary widely with altitude B + tA 3 0 (1.3)
while the dynamics of an electric motor change
with speed and load. To cope with these problems for each plant in the prescribed set and s~n_ t.
we must formulate a 4AittaneouA du"in .heo~y in While such.a test is definative it is local in
which one designs a control system to simultaneous- nature allowing one to test for stabilizability on
ly meet specifications over a prescribed set of a plant by plant basis but yielding no global
plants. Of course, the set of plants may be taken criterion with which to characterize a set of
to be a ball in which case the classical robustness plants which is simultaneously stabilizable. To
theory is replicated. Alternatively, one my the contrary one may adopt a global geometric view
choose to work with a set of plants in which one point to the effect that a prescribed set of
or more parameters vary over a prescribed range plants is simultaneously stabalizable if and only
and/or a discrete set of plants; say the dynamics if it is contained in an appropriate half-plane.
of a two speed motor in its high and low speed The goal of the present paper is the formulation
settings, of a similar geometric criterion for the simul-

taneous stabilization problem applicable to general
The simultaneous design concept is possibly linear systems.

best illustrated in the 1st order case, wherein a
simple geometric solution suggests itself. Assume The starting point for our theory is the ring
that our plants are of the form theoretic fractional representation theory intro-

A duced by the authors In a series of recent papersp(s) • * (1.1) Jn which the set of stabilizing compensators for as 8gIven plant are parameterized. ," Indeed, with

and we desire to design a stable feedback 
system

* This research supported In part by the Joint Services Electronics Program at Texas Tech Univ. under
ONR Contract 76-C-1136.
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minor modifications one can invoke the same theory linear group) and the system itself (which we
to paraneterize the set of plants which are stabi- identify with the elements of a Grassnannian).
llzed by a given compensator. This, in turn,
yields an immediate algebraic criterion for the 11. REFERENCES
sisultaneous stabilization problem. The resultant
criterion is, however, local In nature Just as that 1. Descer, C.A., Liu. R.-w.. !iurray, J.J.. and 2.
of equation 1.3. The desired global criterion for Soaks. "Feedback System Design: The Fractional
simultaneous stabilization can, however, be ob- Representation Approach to Analysis and Syn-
tained if one first translates the fractional thesis". IEEE Trans. on Auto. Cont., Vol. AC-25,
representation theory into an appropriate geometric pp. 401-412, (1980).
setting.

2. Hermann, R., and C. liarin "Aplications art Al-

Indeed, the appropriate geometric setting gebraic Geometry to Linear System Theory". IEEE
proves to be just the Grassmannian first introduced Trans. on Auto. Cont., Vol. AC-22, pp. 19-25,
into thl lystm theory literature by Hermann and (1977).
Martin. I Unlike their frequency domain fornula-
tion, however, we obtain the Graismannian directly 3. Herman, ft., and C. liartin "Applications of Al-
from the ring theoretic fractional representation gebraic Geometry to System Theory: The Mac-
previously employed by the authors. Indeed, the ilillan Degree and Kronecker Indices as Topolog-
Grassmannian is obtained simply by factorinq out ical and Holomorphic Invariants", SIANI Jour. on
the non-uniqueness inherent in the fractional repre- Cont., Vol. 16. pp. 743-755, (1978).
sentation theory. As such, in addition to formlat-
tne the global theory necessary for our study of 4. Saeks, R., and J.J. Murray, "Feedback System
the simultaneous stabilization problem the geometric Design: The Tracking and 3isturbance Rejection
aoproach yields new Insigiht into the relationship Problems", IEEE Trans. on Auto. Cont., (to
between the fractional representation theory appear).
(which we identify with the elements of a general

a) A b) A

plope 1/ t /\ 1

slope I//

0 A d) A

Z 
/

Figure 1. Simultaneous stabilization of a 1st order plant
with a proportional compensator.
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Abstract

A recently developed algebraic approach to the feedback system design

problem is reviewed via the derivation of the theory in the iingle-variate

case. This allows the simple algebraic nature of the theory to be brought

to the fore while simultaneously minimizing the complexities of the

presentation. Rather than simply giving a single solution to the prescribed

design problem we endeavor to give a complete parameterization of the set of

compensators which meet specifications. Although this might at first seem

to complicate our theory it, in fact, opens the way for a sequential approach

to the design problem in which one parameterizes the set of compensators

which meet one specification and then characterizes the subset of those com-

pensators which meet the second spec., etc. etc. Specific problems investi-

gated include feedback system stabilization, the tracking and disturbance

rejection problem, robust design, transfer function design, pole placement

simultaneous stabilization, and stable stabilization.
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Abstract

An explicit relationship between the fractional representation approach

feedback system design and the algebro-geometric approach to system theory

is formulated and used to derive a global solution to the feedback system

problem. These techniques are then applied to the simultaneous stabilization

problem yielding a natural geometric criterion for a set of plants to be

simultaneously stabilized by a single compensator.

kriL3L-I,,G 1., bA.A-.OWt
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Abstract

The problem of designing a feedback controller which stabilizes a

number of plants simultaneously is discussed from the fractional represen-

tation point of view. An abstract solution of this general simultaneous

stabilization problem is presented, and an elementary, explicit criterion is

given for the simultaneous stabilizability of two systems. Finally, some

examples and counter examples are presented, and some open problems are

discussed.
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1. Title of Investigation: Nonlinear Control

2. Senior Investigator: L. Roberts Hunt Telephone:

3. JSEP Funds: Current $25,875
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5. Total Number of Professionals: PI's 2 (3 mo.). RA's

6. Summary:

Although tLneotza tion have long been employed in the analysis and de-

sign of nonlinear control systems their applicability is severely limited

by the approximate nature of the concept. To the contrary, if one could

formulate an exact trajoimuti.on oj a nonineaA zy.' tem into a tinea.6ryyqtem

the established techniques for linear system analysis and design could be

applied to the nonlinear problem. The goal of the present work unit is the

formulation of such an exact tineaxiza~ton theory via the di6ven a

geometAic technLqu,6 previously employed by the senior investigator in his

investigation of the conoZabiItiy, ob~evabitity, and satbitizabU.Jty

characteristics of a nonlinear system.

Although the exact linearization problem goes back to Poincare and has

been studied by a number of system theorists over the past decade with the

aid of a generalized class of transformations introduced by Su we have been

able to formulate readily testable necessary and sufficient conditions for

the solution of the exact linearization problem. Moreover, when these

conditions are satisfied the required transformation is given by the

*NASA Grant in support of Professor Hunt's leave of absence at NASA/AMES

during the 1981/1982 academic year.



solution of appropriate partial differential equations.

Although one might expect that the set of nonlinear systems which ad-

mit an exact linearization would be quite thin; and, indeed, this is the

case; in practice, we have found that many "real world" systems either

satisfy the required conditions and/or are approximable by such systems.

Indeed, the exact linearization concept has been successfully implemented

at NASA/AMES on several autopilot systems.
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LINEAR EQUIVALENTS OF NONLINEAR TIME-VARYING SYSTEMS

L. R. Hunt* and Renjeng Su**

Ames Research Center, NASA
Moffett Field, California.

Abstract

Recent results have shown that a single-input time-invariant system
of the form x - f(x) + g(x) u

can locally be transformed into a series of integrators if and only
if (1) the vector fields g, (ad'f,g), . . (adn'2 f,g) are involu-
tive, and (2) g, (ad'f,g), ... , (ad - 1f,g) are linearly indepen-
dent in a neighborhood of the origin in 3nn. This result is gener-
alized to time-varying systems. A parallel theorem is obtained in
terms of the time-varying version Lie derivative r.

1. INTRODUCTION In reference 3, Su points out the differ-

This paper is concerned with the problem ence between the equivalence relations

of equivalence of nonlinear systems and a defined by Meyer and Brockett. Considering

particular linear system, that is, a series the class of nonlinear systems with scalar

of integrators. Expressed in state space input of the form x - f(x,u), and using

form it is the equivalence relation defined by Meyer,

necessary and sufficient conditions for a
i - xz, x2 = X3, . .rfn-1 = xn, n = up nonlinear system to be equivalent to the

where x,,x2, . . ,Xn are the state var- system Z, are given. This is the largest

iables and u the control. We shall call equivalence class in terms of state coordi-

this system the canonical linear system nates change and feedback, and it properly

and denote it by Eo. contains the results of Meyer and Brockett.

In the past this problem has been studied Later in reference 4, the authors extended

by Meyer and Cicolani(' ) and by Brockett2). that result to a sufficient theorem on the

They obtain two different (but intersect- problem of global equivalence. In another

ing) classes of nonlinear systems which paper(s) (submitted to this conference)

can be transformed into the canonical they also show an interesting connection

linear system Z'. between the renowned Poincare lemma and the

construction of the desired transformation.

*Researcher supported by Ames Research Center, NASA, under the
Intergovernmental Personnel Agreement (IPA) Program dnd the Joint
Services Electronics Program at Texas Tech University under Office
of Naval Research (ONR) Contract 76-C-1136.

**Research Associate of National Research Council at Ames Research

Center, NASA.
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This paper is devoted to generalizing the and satisfies the following system of par-

previous results from reference 3 to the tial differential equations:

time-varying case. In section 2 we define- n IT. IT.

the equivalence relation; the main results 1 1 fj + I , (TI, .T

are stated in section 3. Because the j-1 g

arguments in reference 3 can be applied , - , . n,

here with only slight modification, most

of the proofs of the theorems are omitted. where f f, .,fn) and

g (g1, . . ,. n ) .

2. EQUIVALENCE RELATION
Based on this observation one can prove

We consider the scalar input, time-varying that the r-relation id indeed an equiva-

lence relation among the systems. There-

Z: x - f(x,u,t) fore, we are justified in saying that two

where the origin is an equilibrium state systems are 5-equivalent. In the next

for any time t when u -section we shall characterize the equiva-
lence class that contains the .anonicalA . -transformation is a map T: Rn+2.~]n+1 inersse
linear system Z,.

such that for any t ER the restricted

map T(,t): - Mn+ n1+L is a diffeo- 3. MAIN RESULTS

morphism. For each system Z: x f(x,u,t) First we introduce our notations. Since

the combined vector (x,u) of the state and only the local theory is attempted here,

the control is considered as an element of everything on 3Rn will be defined locally

the space n+2. With the near the origin.
X-transformations we can define a concept We assume the reader is familiar with the

of system equivalence, basic definitions of vector fields and

A system ZI: k - f(x,u,t) is said to be one-forms on Rn. The vector fields and

8-related to a system Z2: y = g(yv,t) if the one-forms in this paper may be varying

there is a F-transformation T that car- in time, namely, their coefficients may be

ries each state trajectory of Z, into a functions of time when they are expressed

state trajectory of Z2; that is, setting in a fixed coordinate frame.

T('P(t;x,,u),u(t),t) = (y(t),v(t)), we have For each smooth scalar function ; on

d(t) = g(y(t)v(t),t), the differential operator d maps ; into
a one-form dC defined by

where 0(t;x 0 ,u) is the state trajectory (/axI)dx, + • + (;/xn)dxn. For a

of Z with respect to the initial condi- vector field

tion x, and control u(t). The follow- f - fL('/Ix) + . . + fn(;/Bxn) and a

ing important observation of this relation one-form w - w, dx1  . . . + Wn dxn' the

is parallel to that in reference 3. dual product of w and f, denoted by

Proposition 1: A system El: x f(x,u,t) (w,f), is a scalar function defined by

is d-related to a system Z2: y = g(y,v,t) Pi +  + nn

if and only if there is a transformation In the course of the development, several

T - (Ti, . - .,Tn,Tn+i) such that T has types of derivatives with respect to a

the property vector field will be used. We state the

;T: aun 0 Tn+i 0 0 definitions with a given vector field f.
---- . . - 0, and ~6
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(1) For a scalar function C onton , f(x,u,t) = f(x,t) + g(x,t) • *(x,u,t)

Lf(C) - C, L'f(;) - (df), and for some vector fields f and g and some

L nf() = L'f(Ln-,f()). scalar function 0 with f(O,t) = 0,

(2) For a one-form w on Mn, 4(0,0,t) = 0, and aO/au * 0 for any t.

20f(c) - w, 21f - d(wf), and From now on we will only examine systems
gnf(,) T Wf(2n-,f(w)). of the form x - f(x,t) + g(x,t)u; this

For a time-varying vector field g, we will not result in any loss of generality

have two types of derivatives: (see ref. 3). A system will also be rep-

(3) (adofg) - g, resented by a pair (fg) of time-varying

(ad'f,g) = (af/3x)g - (ag/ax)f, and vector fields.

(adnf,g) _ (ad'f, (adn-,f,g)). From equations (2) and (3), a system (f,g)

(4) (fg) - g, is i-equivalent to the system E, if and

(r'f,g) - (ad'f,g) - ag/at, and only if there is a transformation

(rnf,g) _ (rLf, (rn'lf,g)). T = (Ti, . . .,Tn,Tn+i) such that the fol-
lowing equations hold.

An important formula involving the deriva- n aT.
tives of types (1), (2), and (3) is D I (fn(x,t) + gj(x,t)u)

+ 1 (x,t) - (x,t) (4)

Now we are ready to study the problem of tTi+(

characterizing those systems that are for i = 1, ., n - 1, and

iT-equivalent to the system E0. n aT

if a system E: f(x,u,t) is E n(f (xt) + g.(xt)u)

F-equivalent to the system ZO with a aTn+ (x,t) = Tn+ , (x,u,t) . (5)
transformation T = (T1 ,T2, . .,Tn,Tn+), t)t

then, fram Proposition 1 we have In the terminology introduced early in this

n aTi  aTi  section, a transformation T satisfies the

)V ax f (x,u,t) + a-(x,t) Ti (x,t) system of equations (4) and (5) if and only

j if T satisfies
i " , ., n - i (2)

(dTi,g) = 0, i = n, ., n - l, 6

n T n  Tn  T.
n-" (x,u,t) + -_ (nt) n (xu,t) (dTi,f) + I =

i = , ., n - , 7)

An observation similar to one in refer- ;T

ence 3 is given as follows. The n-i (dT ,f + gu) + - = Tn+ ,  (8)
n a

equations in (2) say that for each fixed (dT ,g) * 0. (9'

pair of state and time (x,t), the n com-

ponents f 1, . . . ,fn of f, considered Considering the case i = 2, equations 6)

as variables of u, satisfy n-i linear and (7) state that

equations with constant coefficients. (dT,g) = 0. (10

This leads to the following theorem.

Theorem 1: If a system x = f(x,u,t) is d ,f) + - T2.

.-equivalent to Z., then f can be Letting dT. - and substit.;tnq '

expr-- ed in the form into (i!, we -ain

65



f. (2 given in reference 3. we remark that the(Z f(W.),g) + d ( 3t/,g/ - 0 (2
time-varying version of the Frobenius

By formula (1) theorem plays a crucial role.

(V1 f(w),g) - (w, (ad'f,g)) + L'f((w,g)) Theorem 2: A time-varying system

and (w,g) = 0, we have E: x - f(x,t) + g(x,t)o(x,u,t)

(2 1f(w),g) - (w,(ad'f,g)). Because the (as defined in Theorem 1) is X-equivalent

operators d and 8/at commute, we have to the system E. if and only if
d(TI/3t) - /t(dT 1 ) - 3w/at. The second

term in equation (12) then is (3w/t,g), (1) T v fl g s
and the fact that (w,g) - 0 implies n at the oigin at any time t,

(;(,g))/t - 0. By the chain rule, and

(2) The vector fields g,

a)+ .1j at/, (fg), . -, (1n-2 f,g) are

involutive near the origin for
which implies any t.

(, g, -K, . 4. CONCLUDING REMARKS

Summing up these observations, equation (12) The conditions in Theorem 2 describe a

becomes special F-equivalence class of time-

varying systems. For a nonlinear system
<w, (ad' f,g)) - , = 0. in this equivalence class we can solve the

system of partial differential equa-
in terms of the operator 7, it can be tions (13) and (14) for a transformation'
expressed as (w, (Frf,g)) - 0. Similar that will turn the system into a series of

computations change equations (6) and (9) integrators; that is, the system E0. The

into, respectively, system Z, is not only linear but also

•T:, irg)) = 0, time invariant. Notice that the transfor-

i = 0,1, ., n - 2 (13) mation is varying in time in order to

and "cancel" the time dependency of the sys-
(dT,,(-n-f,g) ) * 0. (14) ten. It is not surprising that a time-

varying version of Lie derivative r has
It then can be readily checked that the to be used to generalize the result in

existce of a transfc rmation T satis- reference 3. This operator i in its

fying equations (6)-(9) is equivalent to linear version has previously appeared in

the existence of a scalar function Ti the literature; for example, see Hermes. ()

such that equations (13) and (14) hold.
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THE POINCAPt LEMMA AND TRANSFORMATIONS OF NONLINEAR SYSTEMS

L. R. Hunt* and Renjeng Su**

Ames Research Center, NASK
Moffett Field, California

Abstract

Recent results have classified those nonlinear systems that can be
transformed to linear systems. For single-input systems of the form

k(t) - f(x(t)) + u(t)g(x(t))

we assume that the vector fields g, [f,g], . ... , (adn-2f,g) are
involutive and that g, If,g] . , (ad'-1f,g) are linearly inde-
pendent in a neighborhood of the origin in inn. It is shown that
the transformation mapping this system to a linear system exists by
virtue of the famous Poincar4 lemma from differential geometry.

1. INTRODUCTION T T T

Because of the extensive literature con- T2  T3

cerning time-invariant linear systems, it

is interesting to characterize the non-

linear systems that can be transformed to Tn , Tn+1

these linear systems. In this paper we If we think of Tn+ as being the control
consider single-input, time-invariant non- n+i

linear systems of the form in equation (2), this system is in inte-
grator form with T., T 2, . . ., Tn being

k(t) =f(x(t)) + u(t)g(x(t)) Cl) the space variables. We want (i) T to

where f and g are WOO complete vector have a nonsingular Jacobian matrix,

fields on an open set in In containing (ii) T(O) = 0, (iii) T1 , T2  . . Tn to

the origin and f(0) = 0. The ( trans- be functions of x1, x1 , . ., xn only

formations of interest to us are and to have a nonsingular Jacobian matrix

T - (TI, T 2 , . ., Tn+i), which map in these variables, and (iv) Tn+i to be a

(xi, ., xn,u) space to function of x1, ., x., u which can

(T1, TZ, ., Tn 1) space so that the inverted as a function of u. In addition

system (1) is mapped to the linear system we can also ask where the T transforma-

tion is a diffeomorphism.

*Researcher supported by Ames Research Center, NASA, under the
Intergover.nmental Personnel Agreement Program and the Joint
Services Electronics Program at Texas Tech University under
Office of Naval Research Contract 76-C-1136.

**National Research Council Research Associate at Ames Research

Center, NASA.
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Necessary and sufficient conditions for the [X,[X,YJI, (Y,[X,Y]], etc., can be intro-

local existence of such a transformation duced, and we set

are given in reference 1, and a constructive (ad*X,Y) M Y

proof of the transformation in addition to (ad1X,Y) - (X,Y]

global results is found in reference 2. The (ad1X,Y) - [X,[X,Y]]

purpose of this paper is to show that the

existence of such a mapping depends on the

application of the Poincari lemma from - fX,(adkiXy)J

differential geometry.

Several authors have examined the equiva- A set of vector fields

lence of nonlinear systems and linear sys- (XI, . * Xr } on R n is involutive if

tems under various assumptions. Meyer and there exist V' functions Yijk(x) such

Cicolani (3),(4) considered the block- that

triangular nonlinear (possibly time-varying) [Xi,Xjj (x) ijk(x)Xk(x)

systems; Krener(si gave conditions for-a k"

nonlinear system to be transformed to a . - 1 i,j I r, i # j

linear system under state space coordinate The classical Frobenius theorem states that

changes; and Brockett ( 6 ) studied the equiv- given a point x, . ,n and an involutive

alence of nonlinear and linear systems set {X. ..... Xr } of linearly indepen-

under coordinate changes and additive dent vector fields on Rn, there is a

feedback. The transformation theory devel- unique maximal r dimensional V ' sub-

oped in references 1 and 2 contains the manifold S of Jn containing x. so

results from the authors just mentioned. that the tangent space to S at each
x E S is the space spanned by

in section 2 of this paper we give defini- 
x

tions and study the system of linear par- X 1 ,.., Xr at x. We say that S is

tial differential equations from refer- the integral manifold of X10 .*

ence 1 that determines the existence of a through x.

transformation of the type that is of A e c n dimensional manifold M is

interest to us. Section 3 contains called (smoothly) contractible to a point

exammles, the construction of the trans- x0 E M if there is a function
Zc=ation, and several applications of the H: M x [0,1] - M

Poincarg lemma.
such that

2. DEFINITIONS AND TECHNIQUES
H(x,1) - x for x E M

We give basic definitions and examine the Hx,0 a

technique in reference 1 that proves the n
exisenc ofthetrasfomaton.Of course, Rn is smoothly contractible to

existence of the transformation.
the origin, and a star-shaved region with

Son and n sbet vor) fiedone respect to a point x. is contractible t.
(cr on an open subset of Rn), we define ta on serf )

that point (see ref. 7).
the :ie bracket of X and Y

Let w be a k-form on M, 1 1 k & n - 1,

(X,Y] -;- X - S Y , and let d be the standard differential

operator mapping - to a k + 1 form (in
%-ere -Y/&x and ;X/lx are n x n Jacobian our theory is a cne-forn). A k-form
~r:*zes. Successive Lie brackets like S is called closed if dw - 0 and exact
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if w w dn for some k - 1 form n on aTi

* M. This leads to a famous result of i j , in ,...,n-

Poincari, which we state for V forms.

Lema 1: If M is smoothly contractible

to a point xO F M, then every closed form ax f. T i+  "  n "

W on M is exact. 2 xj ~T+ i ,.,jal

In later applications of this result M

is an open neighborhood of the origin in and
n . Recall that we are interested in a Tn

transformation T - (T1, T 2, . . ., Tn +f)- .J (f u)

which takes the system

k f + ug (1) Solving this system of equations is shown

to the system to be equivalent to finding a V func-

tion T. such that

Tz =T 3  (dT,, (adkf,g)) - 0 , k 0,1, . - 2

(2) <dT1 , (adn-f,g)) # 0 ,

(4)

where (.,.) denotes the duality of one-
forms and vector fields. Thus a transfor-

so that the conditions (i) through (iv) mation satisfying conditions (i) through

(specified in the Introduction) hold. By (iv) (specified in the Introduction) exists

design, this mapping will be a diffeomor- if we can find such a T. that vanishes at

phism near the origin; conditions under the origin.

which we have a global diffeomorphism are 3. GENERAL RESULTS

discussed in reference 2. Necessary and

sufficient conditions for the local exis- We show that the Poincari lemma can be

tence of such a map are that (a) the matrix used to discover all of the functions

{g, [f,g], .. . (adn-i',g)} has rank n T1  satisfying equations (4) under the

in some neighborhood of the origin in assumptions that the matrix

(x, X21 .. .. xn ) space, and {g, [f,g], ., (adn-if,g)} has rank n

(b) the set of vector fields and the set g, [f,g], . . ., (adn-2f,g)

g, f .. ,(dn-2f,) is involutive is involutive. The transformations
T = (T., T2 ,  ., n+( fothe nod-

in some neighborhood of the origin in the T T with condi-
sam spce.By ondtio (a abvetions Wi through.(iv) (from the Introduc-

g, If,g], ... , (adn'f,g) are line~iy" tion) holding can be found by applying

independent, and the Frobenius theorem% equations (3).

implies the existence of a n - EXample I: We examine the nonlinear

dimensional integral manifold of system

g, (f,g], . . ., (adn-?f,g), using condi- r [3s n x2] + Fol] () gx
tion (b) above. L In 0  I+u ~ fx gx

From reference 1 we know that a transfor- X

mation T (T., T 1 , .... Tn ) must on ]R. Computing the first Lie bracket

satisfy the system of partial differential we have
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If~] Cs xExample 3: Suppose we have,(f,J=-- o- .[- x'
Sf(x) I(x )]

= I+ =f + ug
and g and [f,g] are linearly independent f2 (X) 'g2(x)

on ((x ,x2 ): -W/2 < X 2 < n/2} -U. on R 2. Assume there exists a smoothly

Certainly the vector field g is non- contractible neighborhood U of the origin

vanishing, so there does exist a trans- in (x,,x2 ) space on which

formation (T1,T2,T3 ) with (x,x 2) ina

neighborhood of the origin in 3R [(TI,TZ) 1. g is nonzero

is a diffeomorphism for a sufficiently 2. g and f,g] are linearly independentsmal eigbohoo].3. ([f,g],g] - ag for some V -
small neighborhood).

function a.

We show that the Poincarg lemma implies

the existence of a transformation with Assumption (3) above is due to Brockett(')

(x, 1 x 2 ) in U. We need to demonstrate and is one of his conditions for a trans-

the existence of a V* function T. formation (using coordinate changes and

satisfying equations (4). Consider the additive feedback) to a linear system. In
reference 1 it is shown that a transforma-one-form w - 1dx1 +O0d* 2  on U. Since
tion of the type discussed in this paper

it is closed and U is contractible to

the origin, there is a V m function T, exists in a neighborhood of the origin

satisfying dT, - w by Poincari. Now under assumptions (1) and (2) only. It is

<dT2.,g) - 0, and since g and [fgJ are interesting to note that Example 1 does

linearly independent on U and dT. 0 0, not satisfy assumption (3).

(dT1 ,[f,g]) # 0. The transformation T We take the one-form

exists for (x,x )cU, and taking T1  g2  g!

with T(0) - 0 conditions i) through iv) det C x det C 2

hold as desired. Such a transformation is where C is the 2 x 2 matrix with columns

(T1,T2,T3) = (x,,sin x2,(cos x2)u), which g and (f,g], which is nonsingular on u.
is one-to-one on U. This form is closed if and only if

Examnle 2: Consider the system oA IR 2 g2 g

I - + u =f+ ug. X 2

Lfz(x Lgz(x Letting [f,g] = h, [h,g] - ag gives

Assume that there exists a smoothly con- agh I h I

tractible neighborhood U of the origin h i a hg - -- g, ag,

in (x,,x2 ) space on which and

1. g is nonzero and
-Iag 2  gZ ;hh2gx ;x 2 hI : 7Xh 2g/ - -(g,/3x1) 1g h +-h 2  .--. ~g =.a

g and (f,g] are linearly ,x-1  X 2  - 2

independent. Substituting these last two equations into

The one-form c: dxg - g 1 dx 2  is closed (g' g
on U (d_. ( g:/Oxz + g1/^x)dx2  A dx1)), x + dxt

so there exists a e M function T, [we I

:ake T. (0) - 0] so that dT, - -. Again we get 0; that is, assumption (3) implies
, 0 and dT,[f,g]) # 0 by that nhe one-form is closed on U. 3v

the Poincare lema there exists a
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function T. on U with dT. - W., In this way we deal with the partial dif-

The facts that (dTj, w) - 0 and ferential equation (dT,, [f,gI) = 0. The

(dTj, (f,g]) 0 0 follow easily. solution of dx/dt 2 = [f,g] with initial

We consider the general case for equa- conditions x(st 1,O) - x(sti) is

tions (1) and suppose that the rank assump- x(stt 1 ). Continuing this process, the

tion on the matrix last step involves the system

{g, If,gj, ., (adn-if,g)} and the dx dT,

involutive assumption on dtn (adnf,g) , d -i

g, (f,g], . ., (adn-2f,g) hold on some which is associated with the partial dif-

open neighborhood of the origin in ferential equation ( T1 , (adn-2f,g)) - 0.

(x, X2 1 . . "' xii) space. We seek a By x(s, t, . *, -n_ we denote the

solution T, of equations (4). It is integral curves of the vector field

important to remember that first-order (adn-zf,g) with s, t1, ., tn-2
linear partial differential equations are behaving like parameters.

solved by reducing them to systems of

ordinary differential equations. At each Since g, [f,g] . . (adn-lf,g) are

stage of our constructive procedure we linearly independent, the matrix

give an equation for T, to satisfy, but "x 1  3x, ax1
we wait until a construction is completed -9- t-- . . atn_
and let the Poincare lemma give a solu- ax2  ax2 ax2
tion T, to all of these equations. - -tn

Since f and g are complete and

q, (f,g], . (adnlif,g) are linearly .

independent, we know that

If,g], ., (adn-1f,g) are complete. axn axn axn

For ali s e m we solve the system
called the noncharacteristic matrix, is

dx
d- (adn-f'g) nonsingular. Thus s, t1 , ., tn_.

can be solved for x1 , x2, ., n  inl a
with initial conditions x(0) - 0 tocabesldfo xi 2PXn na

neighborhood of the origin. we denote the

obtain the unique integral curve x(s) of map
(ad n-f,g) through the origin in

(x., x 2 , ., x) space. The partial

differential equation (dTj, g) = 0 is x .... tn1 ) .

solved by considering for all t1 E M xn(St .. . tn_..)

the system by F and note that its Jacobian matrix is

dx dT = 0 the noncharacteristic matrix.

We are now ready to prove our result con-

We denote by x(s,t,) the solution of cerning mappings of nonlinear systems to

the first system dx/dt, - g with initial linear systems.

conditions x(s,0) - x(s).
Theorem 1: Let U be an open subset in

We then examine for all t, 6 7 the system (x,, x2 , ., xn) space containing the
dx - [fc origin and su:zcse that

dt 2  - ' dt 2  (a) =, (f,g], ., (adn'-f,g) are

i " : nez n cn U, and
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(b) g, [fg] .... (adn-2f,g) are g, [f,g], ., (adn-2fg) as

involutive on U. Also assume the mapping ti , t 2, ., tnI vary. Now, T, i

F is one-to-one and that the noncharac- constant on each integral manifold and

teristic matrix is nonsingular on an open must solve (dT1 ,g) - 0,

subset V, which is smoothly contractible (dT1 ,(f,gf') = 0, ., (dTj,(adn-2fg)) 0

to the origin in (s, ti, ., tn_) as functions of s, t1, . n i . Our

space and with U C F(V). Then there assumptions on F and the noncharacteris-

exists a transformation tic matrix imply that we can solve for

T - (TI , T Z , . . ., Tn+):U - R n +' taking (s, ti, ., tn-i) as functions of

system (1) to system (2) so that i) T has (x1 , x, , . , xn) and hence the desired

a nonsingular Jacobian matrix xith respect partial differential 4quations are solved

to (xI, . . , xn,u), (ii) T(0) - 0, on U.

(iii) Ti, T z, . . ., Tn  are independent Since g, tf,g], ., (adn-f,g) are

of u and have a nonsingular n x n linearly independent on U and

Jacobian matrix, and (iv) Tn+i is a func-

tion of (x,, . . ., xnu) which can be dT1 = 2 -is- T, s X

inverted as a function of u. a ax 1 as ax2

Proof: Recall that we need to find a V + " 1 s

function TI that vanishes at the origin 
as ax dxn - s(s)ds

in (x,, X 2 , ., xn ) space and satis- is nonzero on U, the equation

fies equations (4). we have constructed (dT.,(adn-if,g)) # 0 holds on the set U.

the function F(s, t',' . . .' t ) whose We conclude with the following example.

Jacobian matrix is the noncharacteristic

matrix. Example 4: We take the nonlinear system

Let 0(s) by any W V function of s x1  sin x2  0

which does not vanish on V (think of k [2l= i x 3+ u = f(x(t)) + ug(x(t))

as defined on V because of its indepen- [0J
sider the one-form on R3. Computing Lie brackets we have

= Q(s)ds + 0 dt1 + ... + 0 dtn-I on

V. Since it is obviously closed on V [f,g] = - co x]

there exists a ' function T( [s)

satisfying dTj w such that T1C0) =0. 2Cox

Certainly (adf,g) 0 0 ]
;TI aT, ;TI 0

t 'tn-i

on V, but how does this relate to the [g,[f,g]] = in x
equations (dT,,g) -0, 

IS0o

~..,tf,gD> - 0, . . dT:, (adn-2f,g)) 0? Thus conditions (a) and (b) of Theorem I

Since g, (f,g], . (adn-fg) are are fulfilled on the open set

involutive on U, the Frobenius theorem I r -

and our construction of the map F imply - 1(x ' ) 2 : <'

,.at for each fixed s we have an n - 1 -

dimensional integral manifold of 2 2
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The solution of Roger Brockett presented-results concern-

dx ing mappings of nonlinear systems to.

d-s = (adf,g) x(0) =0 linear systems and provided a construction

is xl (s) = s, x 2(s) = 0, and x3 s) = 0. similar to that preceding Theorem 1 at a

The system 1978 CBMS conference held at the University

of California, Davis.
dx I
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TRANSFORNING NONLINEAR SYSTEIS*

L. R. Hunt And Renjeng Sut

ABSTRACT

We consider nonlinear systems of the form

m
c(t) = f(x(t)) + I ui(t)gi(x(t))

where f, g1, "''' g are C complete vector fields on n and f(O)-O.

Because of the amount of literature devoted to-tte study of linear time

invariant systems, it is reasonable to ask necessary and sufficient con-

ditions for the pbove system to be transformable to a linear system.

Using such a transformation we could construct a regulator for the aon-

linear system by building one for the liiear system (G. Meyer has done

this in his study of automatic fligh-. corncro1%. It is the purpose of

this paper to find conditicns (dependiag or. Lie biackets) for a trans-

formation to exist. Basically, we choose a canonical form for a linear

time invariant system and investigate the possible mapping of our non-

linear system to that canonical form.

I. Introduction

Suppose we have a nonlinear plant that we are to control to perform

some task. For example, an aircraft which is designed to automatically fly

*Research supported by NASA Ames Research Center under the IPA Program and
the Joint Services Electronics Program at Texas Tech University under ONR
Contract N00014-76-C-1126.
tResearch Associate of National Research Council at Ames Research Center.
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a designated path despite modelling errors and disturbances (see [11, [21,

[3]). We consider the mathematics associated with such a problem.

Assume the dynamics of our plant are describa by the system

(1) x(t) - h(xt,u),

where x e I n and h is a complete C vector field. Our research involves

multi-input and time varying systems, but to save notation we emphasize

the single input and time invariant system

(2) k(t) - h(x,u),

and mention the more general results.

Since the design theory for controllable linear time invariant systems

is trcated in the literature, if our nonlinear system is equivalent (say

using coordinate changes and feedback) to a controllable linear system, then

we can use this fact in our control problem.
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Thus we are iLterested irt- characterizing those nonlinear systems which

are transformable to controllable linear systems. The transformations we

consider are maps T - (TIT2 ,°00,T n+ 1) which take V x I (with variables

(klx 2 ,...,X ,u)), where V is an open neighborhood of the origin in state

space, onto an open set in 3n+l ((T,T 2 , .,Tn+1 ) space) conpaining the

origin, so that the following properties hold:

i) T(o) = o

ii) TI,T2 ,',T n are functions of xl,x 2,-..,xn only and have a nonsin-

-gular Jacobian atri on V

iii) Tn+1 is a function of Xx x, n for wu is nonzero on

VxM

iv) TI,T 2, •s••,Tn+1 satisfy

TQT To
1l 2 T 2 0

TT T0
2 3 2 3 0

(3) or .+ Tn+ •

T- T 0 1l
n n+l n

that is, TT2,'",Tn are the state variables and T n+ the control for our

controllable linear system

v) T (T1 ,'T2 ,',Tn+ ) is one-to-one on V x Ml.
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Results in this paper are local (near the origin in state space),

but global theorems have been proved in [4].

It is shown in [5] that if the system (2) is transformable to the

system (3), then it can be "reduced" to

(4) i(t) - f(x(t)) + u(t)g(x(t)),

where f and g are C vector fields on V, and we assume f(O) = 0. Hence we

wish to map system (4) to system (3).

For related results concerning the transformations from nonlinear

systems to linear systems we refer to the research of Krener [6], Brockett

(7], Meyer [3], Jakubczyk and Respoudek [8], and the authors [4], [5], (9],

[10], [11].

In section I1 we give basic definitions and the partial differential

equations we must solve to build a transformation. Section III contains

the main result, a constructive proof of a transformation, and comments

about the more general theory.
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11. Definitions and Preliminaries

If f and g are C vector fields on an open set in Rn we define the

Lie bracket of f and g

[f,gua - af

where and are n x n Jacobian matrices. We let

(adof,g) - g

(ad f,g)- [f,g)

(ad 2f,g) - [f,[f'g.1)

(adkf,g) - [f,(adk-f,g)].

For h a C°  function on V we define the Lie derivative of h with

respect to f as

Lf(h) - <dh,f>,

with dh being the gradient and <.,.> being the duality between one forms

and vector fields. If w is a C one form, then we have the Lie derivative

of w with respect to f

Lf(w) f + If?'
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where * denotes transpose and i and x are Jacobian matrices.

A relation between the three types of Lie derivatives just defined is

(5) Lf <w,g> - <Lf(w),g> + <w,[f,g]>,

where g is a vector field and f and w are as before.

In [5] it is proved we can transform system (4) to system (3) by

T = (T1T2,. T + ) if and only if T1 ,T2,'-.,Tn+1 have linearly indepen-

dent gradients and satisfy

<dTI,,> - 0, i-l,2,**,n-l

(6) <dTi,f> - Lf(Ti) - Ti+1 , i-1,2,.-.,n-1

'edT f~g Lu nT n+l- f+ug )- l"

Using the formula (5) repeatedly these equations become

<dT l, (ad kf g)> M 0, kO',l,...,n-2

(7)

(-1) n'lu<dTl,(adn-lf,g)> +<dTn, f> - Tn+I .

Hence we have a desired transformation T if and only if we can find

a solution T1 of

<dT1 ,(ad f g)> - O, k-0,1,-.-,n-2

<dT ,(ad f,g)> # 0

which vanishes at the origin. The remaining coordinate functions

T2,T3"..-,Tn are easily derived from (6).
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III. Construction of a Transformation

A collection of r vector fields al(x),a 2 (x),...,ar x) of R
n is

called involutive if functions Tijk(x) exist so that

r
[aaj] (x) - k Yijk(X)ak(x), l<i,j<r,ij.

k=l

Our main result depends on the assumptions
(an-if

a) the set {g,[f,g],",(ad fg)} spans an n dimensional space, and

b) the set {g,[f,g] ,''',(ad n-2f,g)} is involutive.

Theorem 3.1 Conditions a) and b) hold for (l, 2 ,'*',xn) in some neighbor-

hood of the origin in 3R n if and Only if there is an open set V Cin

containing the origin and a transformation T - (TIT2 ,'*',Tn+I) : V x JR -
n+l

such that properties i) through v) hold.

This theorem is proved in (5] , and we illustrate a method for con-

structing such a transformation. For a real parameter sl c R we solve

dx(s 1) n-i.
dX(S1- . (ad f,g)dIs1

with initial conditions x(0) - 0. Then we consider for s2 e IR the system

dx(slps2) n-2

ds2  (ad fg

satisfying x(sl,O) - X(s1 ). Repeating the process n-2 more timcs we arrive

at the final system

dx(ss 2, .. ,sn )
=g

dsn
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with initial conditions x(slS 2,. .,s nl,0) X(s lsS2,..,sn-l). We have

a map

(S1,32, too'sn (xl(sl-S2,..-,sn), x2 (8 1ss 2 , ..,Sn), ,x(a1 ,S2 ,..,s))

with a Jacobian matrix at (0,0,.--,0) equal to the matrix with columnms

(adnf,g),(ad-f,g) ,'" ,[f,g. Since this last matrix is nonsingular

at the origin by condition a) we can solve for (SiS 2 ,..,s n) as-functions

of (xlx 2,...;-x) in an open neighborhood of the origin using the inverse

function theorem.

If we can find a function T1 which solves (8) as a function of

s ,s,..;,a", then we know T as a function of xl,x2,°-.,n. Because

g, f,g,°**,(ad f,g) are involutive, as we fix s and let ss0,.s
1 52' 3 'n

vary we get an integral manifold of this involutive set by the famous

Prebenius Theorem. Hence if we choose T1 - s I , then we have a solution of

(8). As was mentioned earlier T2 T3 .°.,T,+1 are found by differentiation.

An illustration of this technique is given in the following example.

Example 3.2 Consider the nonlinear system

F~11sing
"3J 2L10xX + U [0 f(X(t)) + L(t)&(xlt)))

for (xl 1,x 2 ,x 3) V with

V ={(x1 x2 ,x 3) - < x2 <
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Computing we find

I ~ (ad 2f,g) 0 :
and conditions a) and b) of Theorem 3.1 hold on V. Solving

dx 2
s (ad fig)

dz

dx

in order and with the correct initial conditions we have xMs l' x2  -'2

13 8 Thus our transformation T (TT 23T33 T4  is

T 2i sin x2

T -9 10 2
T4 (cosx 2 ) (-0x 1 )sinx2 + (-sajar 2 ) (x3-x1 )+ (cosx2 )u.

It is interesting to remark how these transformations for (4) are

used in practice. We want to choose the control u to drive the plant.

If all state variables are available to us (estimates can be-used if thcq

are not), we map to the linear system and choose our control Tn+i. Then to
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find u we just have to solve the equation

(-l)n u < dT1 ,(adn-lf,g) > + < dTnof > Tn+1

which'is linear in u.

If we consider the multi-input system

m(9) :kt) = f~x(t)) + i ui(t)gi~x~t))
i-I

then for our target controllable linear system we choose a Brunovsky £12]

cahonical form associated with a set of Kronecker indices IO2,,..,Km

A transformation T - (T1,T2 ,...,Tn+m) exists if and only if the following

conditions are satisfied for all (xX2,**,xn) near the origin. The set

c {gr [f'g ] 1 ' ' ,o ,(adrl-lf'g gl> g2,-[f,g 2 ],,*(ad r.2 fpg2) ,'.",
C, [f, l-,"',(ad 1 f,%))

spans an n dimensional space, the sets Cj f C with

Cj = {gl [fgl1] ,',(ad j-2fgl) 'g2 '[f-g 2]","'(ad'J-
2f g2),'.'

g, [fgin ," (adtJ-2fgm)}

are involutive, and the span of each C equals the span of CJ*n C for

J - 1,2,4'°,m. This result is proved in [9], and a discussion [11] of this

topic was presented at the recent JACC meeting.

For time varying nonlinear systems one must replace the Lie bracket

[ere] with a time varying Lie derivative (see [10], [13], and [14]), The

tine variablo t appears as a parameter in constructing the transformation,
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and we map to a controllable linear time invariant system.

In system (4) we assume that f(O) - 0. Current research is in pro-

gress for which the origin may not be an equilibrium point of the vector

field f.

The authors wish to thank George Meyer for valuable conversations.
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Global Mappings of Nonlinear Systems

L. R. Hunt* and Renjeng Su
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If f and g are complete S vector fields on ,n we examine the nonli nar

system

i(t) - f(x(t)) + u(t)g(x(t))

We find sufficient conditions for the existence of a global transformacion

defined for all (xl,x 2, . , Xn)eP. which takes our nonlinear system to a

linear system. A constructive proof is given of the traasfoiration by sol.,ing

a system of partial differential equations. We require that the vector fields

, . ., (adn-lfg) span an n-dimensional space at each point of In ,

nl-2 n
that the set {g,[f,g], .. , (ad f,g)} is involutive on R n , and that the

noncharacteristic matrix defined in our construction of the transformation

sattjfies the assumptions of various global inverse function theorems.

Dn le,,.' fret. De1art0-.e.t c- .ahenatizs, , £ec.1 . 7 ,
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NC CI.ATURZ In this single input case we map to the linear
system in integrator form

infinitely differentiable functions ,2

An dimenaional real Euclidean space y Y 0

UL controls

time derivative of x .(3)

1.- 11TOU O Yn 0
I. I1 TRODUCZON nx "

Suppose we have the nonlinear system ?n L 0 j

If we were considering the general system (1) then ae
m G attempt to map to a linear, system in its Brunovsky 13)
-f(,t) + E uIt.gi(x.t) canonical form associated with the Kroneckar indices.

We indicate the mappings of interest to us. A

where f. g.. . , so are complete (no finite le transformation T - (T1 ,T ..... Tn+x) takes

escape ti) "- vector fields on Rn and Rn+1 ((x,,x,, .... xn,u) space) to
f(Ot) - 0 for each t. Recent results have con-
tained nscessary and sufficient conditions for there . ((T 1 ,T . T,Tn+,) - (Y1 ,Yz, . YnV) space)

to be a local transformation of system (1) to a con- so that T has the following properics:

trollable time invariant linear system. We combine

these results with certain versions of the global I) T(O) - 0

inverse function theorem to yield conditions under it) T 1 ,T Z . . . . . T n  are functions of

which a global transformation exists. To simplify x.x 2 , . . . xn only and have a nonsingular Jacoblan

notation In this paper we restrict to the single matrix on ;"__

inriuL tice inv&riant (autonomous) system iii) 
T
n+x is A function of x-,x, Xn,U

which can be inverted in terms of u for all
k(t) - f[x(t)] + u(t)gSW()1 , (2) (x ,;. .. xn)tl n ,

iv) Tz,T 2 , . .  ,.

T
n are the state variatles

but cur theory will generalize Co the system (M). and Tn+ the control for our linear systen .),
v) T - (T;,.T.... n , Tn+.) is a one-to-,e Mip-

pin of r,+I to I
+  

taklng syten (2) co ayi-
Lem (3).

We denote by if.:i the Lie brackets of our vector

fields f and g, (ad'f,t) o f,':, gil.,

(adkf,g) - [ _)(I!. fl. -.he et
(g,(f,g! , (ad

- 
f, )3 s~s an n-dim cnrsun

space ac -he origin in R' and the set

points ecir the crigin, then system (2) c.i- be
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transformed t4 system (3) for all (xlx 1 ..... xn ) Let f be a W' vector field .nd h a W-
in s me open neighbortioad of -he 7rifin. If these function. Then the Lie derivative of h with resrecr
conditions on {;,[t,g)1 .... (adn f,.g)) and to f is
(gIf~gJ, .... (ad

n -~ t,g)i hold at every poin in
71". we give a construction of a tranoformation L (h) - (dh.()

- (T , . . Tn+ ) . In the process of building

T we introduce the noncharacteristic matrix (named
for the noncharacteristic condition in partial differ- where dh is the gradient and (...) Is the duality

ential equations). i this matrix satisfies th between one forms and vector fields. It

ratio condition on Rn, or other conditions for which f,
we can apply a global inverse function theorem, the
tranaforation T exiats to? all (x , .... f
and satisfies properties i) through v) listed above.
For other results concerning the transformation from
nonlinear systems to linear systoms we refer to the f
work of Krener (13). Brockett (2), Mayer end Clcolani
(1).(LS). and Jokubczyk and Respondek (1), and the
authors (78,9,10). Our results depend on the local
theory developed in (18). Details, proofs, and other
theories concerning global transformations appear in then

(7 ) . - f.
Classical results involving global inverse func- (dh,f) _h f+

tion theorems are found in the work of Hadamard (4), an

(5). and (6). Other interesting theories in this
o i-ecrion are attributed to Palais (16), Berger and For w a W- one form on 

n , 
we have the Lie

Uerger (Q). Wu and Desoer (19). Kou. Elliot. and Tarn derivative of . with resnect to
(12), and Sandberg (17).

Section II contains definitions and the system - (.4 f +
of partial differential equations from (18) thar we f \dx + x
must solve in order to find a transformation of the
desired type. In section III we state our main where * denotes the transpose and ,,*/lx and )fix
result, give an outline of its proof, &nd present are Jacobian matrices.
several examples of ics application. Our three Lie derivatives are related by the

formula
11. DUF.ITIO4S

Tor V- vector fields f and g on an (or
generally on a differentiable manifold), we define the Recl that we want s transformation that maps ourLiei hs w anbrackfrmtintht astu
Lie bracket system (2) to system (3). which we rewrite in the

If.1 afT (TI.T2, n+ , ) coordinates (for Be'1) as

;X Sx i T 2

with g/$1x end 3£fax denoting n x n Jacobian f, - Ts'

matrices. We also have

(
5
Agj-.g

t n I+
(ad'f,&) - (fg]

-adl ) ( l From (18), necessary and sufficient conditins for the
(sdfg) , ]existence cf a transformation for (x,.. ..... .)

in some neighborhood of the origin in E1n are:
a) The set (fg,(f,gj ..... (adn-f.g)) spans In

(adkfg) ff,(ad kf.&) n-dimensional space, and
b) The set (gt,g]...,.(adn-2 ,g)1 is Invc-

A collection of 1" vector fields f,,f., lutiveh

f- on 11n is called involutive if functions aik.(x) boh in a neihborhood of tlhe origia. A tranoratis.

exI.st such chat T must satisfy the partial differential equations.

r (d 1 ,g) -0. 1 1...... n - I

[f 1 .1j](x) E a j
k 

J(x)fk(x), i,j 1 r i ( ,dTi.f) - Lf(Ti) - Ti+ ,  1- 1,2, ... ,.n - I

civen a xcr70. ard Ln in£.oilu:V Ret OKn 'f 4 ug> - Lftu;(Tn) - Tn+i
•c '; a... . . .. fr " of vector field s on I " , then there (3 )

ex'sts a uniqse ,-.airl r-direnstonal W' sub.ani-
.o. S ,5 F1 Y, o th.at the t.,cr.nt as shown in (18'.
tprce to S At ?, h ? ,e .L x,4 iA the bpace panned Using the ( irTnu ; -(4) t.s .. c-I ,C :;m s h .. ,

ry (.f:) r(x) in this cns, S 15
--:.i rtfo,! of ,.f Lhrough (.'r,(udkf.g)) - O, ii O.. -

'. . b.,':. -rens Thezrcn. (dn T - Tn., .
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The 9 econd equatien in (6) Is the a-o as r"x .1x1

(- (cir(dT) .(, T, .21 It

Thus to find a t rhos rt,.ei- itinHi Li:lI. c,,scI 11 111ci14
1) through v) as gi ven In the u rc1.1%Nuct1cm1 llsoicl 3cr It I'
must find a solution T, If )

(dT,.(adkf.&)) 0. k - 0, . n - 21:

(dr1 (adn"'f.g)) I'0 It 21 3X Ix 3x

that vanishes at the origin. Tile functions t 3t- 3.
.2T.. .To+, arm then easily derived from

equations (5) n By design thils matrix evaluactud at the urlrin in
The local theory gives us a transformation which B i the some an tile matrix withc coiumn

is applicable to a neighborhood or the origin in Hn. (adn-lf.&),(adn-2f~g),...... evai~uated at
but gives us no ides of the size of the neighborhood. (0.0,.....0). This last matrix is nonaingular. so
Next we construct a solution T, and introduce condi- by the inverse (unction theorem there is an open
tions under which the transformation neighborhood of the origin on which we can solve re'r
(T,.T 2.. .. .. Tn+,) is global. t~.t2. .. tn as functions of x,,x,.

If we can find ac solution T, of equ.tiu( ( .1S
111. CONSTRUCTION OF THE MA.PP!NC a function of t,.t, . . ... to we havu- A 1sLtion in

the x variables also.
lVe begin this section by building a function T, We now use our assumption that gI~l

which satisfies equaztions (7). The first (n - 1) (Sdn-2f.&) are Involutive. The Frobenius Theorem
equations are partial differential equations that are tolls us that if we fix the parameter tj and let
solved by reducing to ordinary differential equations. rt,. ..... to( varl ws get an integral manifold of

Parameters rt..... . .* . are introduced a" g.[f.&J.. ..... adn- f~g). An obvious choice (our
follows. F'or all t~clq we solve transformation is not unique) for T, Is T, - L1.

This function is constant on each integral manifold of

dx n- I S.CfgJ... ... (adn-2f~g) and

ZFT . (ad f,g) 3T, aTI T

with initial conditions x(0) - 0 to find the into- at at 3  atn
Sral curve of (5 4 n-1f,g) through the origin. For2

every t 2 cR we examine Hence the first (n - )cqiution-s In equacti~nis (7)

dx n-2 % hld. (dr.aI'frg) iceTp
-(ad f,g) Suppose d,,(a )- 0. Sic T,-(

we [save dT1 0 0, and (, 1 jfl-f, 1 ,) 0 0 at LIP- orlKin

satisfying x(tj.0) - Cotnigwesveoral implies that (adn-lf.x) is tangent to tile integral
tgeR the equation A Cotnigweslefral manifold of g.[,rf)g. .... ( dn-2r,g) at

(0.0,.....0), a contradiction to the assumption

dx n-i that g1f~g]......(ad'
1
'lf~g) are linearly indepets-

- (ad f.g) dent there.
-tI Hence there is an open neighborhoodi of the origin

with X(t1 .t2.0) - x(tit2). This argument is on which conditions i) through v) hold. Note that

repeated until the final step is reached, so0lving T* tj and the mapping which has the noncharacteris-
tic matri.x as its Jacobian matrix naps the origin to

dx -gthe origin, implying that T(0) - 0.
dtn . 9The function T, satisfies

(eT,,.ad kf~g)) 0, k *0.1...... 2
with the initial conditions

and

aT~ I T1 I

Thus we have a function at, 2 .il tn

.tIt. tn) - (X I(t I -c L)dx I(t I t . tn). Likew~ise T, is a solution of

tn)) (dT,.(ad kf.g)) 0. k - 0,4......n -

which has as itf Jacobian matrix the noncharacte.Iistic (s oml 4) n
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Continuing in this way we have T, independent of+
t,.t 5 .... to. and in cntral Ti does not depend -[e ,

on t±4.l-ti+.- " . to for I :S :S nl 1. Since J
T 1 T. . .,TI are linearly independent anid their
jacciiian nntrix vi th rempect to Llt1 , to i4 lineanrly mndc ,iidrilL fr~m p, ,it F and I.tsin
has all entries above the diagonal zero. Lte mapping luttve assuriptiun on g I!; trivial for two* diin-il.i,,rin
(T T21 TO is one-to-one as a function In the Suleing dxl , dt - -(,x, + 1). dx-/dt, - 0 i,.
t variables. x1 (O) -0 and x;(O) - 0 we have is, - -2L, and

Hance, wherever assumptions a) and b) hold. the x, - 0. Fxnminini dx,/dt. - 0 and dn./ILt. - I With.
only possible obscrucclon to constructing a transfer- Initial condiulns 1 t1 0 -2tj, and x-(t:.,
mation T - (T1.T2. . ,Tni~) with the desired we find x, - -2t1.. and x2 - t,. In thIs ce~ the
properties is contained in the rionchracteristic noncharacteristic matrix is
matrix. Our global results depend on this matrix.

The first theorem that we need Is found in (12). [2z 0]
Theorem 3.1 0 1

Suppose there is a map wihis dif- whhfuflsteriocdtonwth *12

ferentiable with Jacobian matrix .1(x). If there Hnc ourfll transfratio ndii ih 12
exists a constant c - 0 such that the absolute Hneortasomto

values of the leading principal minors 61,A2, .T. An (+ UN, + (X:,,.+
of .1(x) satisfy (Tj.z,7, . (. -,6J

for all xcRn * then H is one-to-one from onto - ~ +I(i )
RA. is defined on all of R2 and has properties I)

The condition stated on the-absolute values of through v).
leading principal minors is called the ratio condition. The proof of the following corollary depends oa
Our first result is proved by applying Theorem 3.1, results like Theorem 3.1. from (12).
the construction of our transformation. and the com-
mots made during and after the construction. Cnrollary_3.1 4 m

Supp~ose spon af.rsI
Theorem 3.2 ,a-d i snsloa I ()l.Sa.ce -s)hi

1 and1 
Igr.1 f *I.

For system (2) assume that tile set (adn- f,g) ) Is itiv,-lial vte thr-. ir ri~*~m. ~
(gEfg].....(ad'i~) sasa -iesoa the ratio condition for tic nmicharcrltcsir~

space at each point of r and the set In Theorem 3. 1 is relalced by any of the foi lowin,

(&.If 'g)....(adnzfgli noulea hypotheses, then the ccriclubions Of thatteoe
If the noncharacteristic matrix (8) 1Stiafias the remain valid.
ratio condition on 'En. Chen there exists a V-1) There exists an n - n nonsingular cnmsstat,t
trasforration T -(T 1.T2. . T1, with the fol- matrix A such that A multiplied on cte right Ly

lowing properties, the noacharacteristic matrix satisfies the ratio con-
i) T(0) - 0, dition on 11".
ii) rj,2. ......Tit are functio.sof 2) The nontcharacturistic matrix (with a possible

.32----,x, 1 only and have a nonsingular Jacobian pressultiplicatlon by an it - n rinouiinp..ar constant
matrix on 1n, matrix A) Is positive deftnite o'n R".

iii) 
T
n+j is a function xl,x,, . .Xn, u 3) The deteirminant of Lite. iincha~ractcrts.tt mtrix

which can be inverted in terms of u for all is poIitIve on Mn and tie SuLm of Lte itn.nharatera,-
(xz. . ... .. . x,)cRn. tic matrix and Its ad i,,t. ',is .ufl-t.at lye rrilictla

iv) T1 .T.,. . ...
T
o are the 3state variable.% minors for all xtR". in tis Cast-. Lte rittrwharo,- tr

and 
T
o+, Lte control 'ri nitr Ii norr sys~tem, (3) . 1-st ic mat rix may hit prv.niliipli id by aii it ii

v) T", (T, ............ n+,)Is . a one-t,-nt: map- iti ngi I r Constant Matrix A ':: hvfore.

ping of t to R n_; ' tai system (2) to system (3). often we canlnt CoinstrUCt .1 trann.irm.(iiii i w tit

of Ra' but are able Lo do qso on N.'mv oTixvr -iA-

:aIe3.3 set U of Rn. In this directicin W4. c:!nslder thev
We take the nonlinear system on TOfoihowlng example.

L X,2e J] + uJ [ *1 f(x(t)) + ug(x(t)). £xa~L: 3. n x]+rO

Our first Lie bracket -L iLsii + 0 CLJ (x(t)) + U(tptiA(t))

aIM
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CONCLUSIONS

We have given a theorem and its corollary in
which vs stte conditions for having a global trans-
formation of a nonlinear system to a linear system.
in doing so we gave an explicit method for constructing
such a :rsnafornation and introduced the important
zoachracteristi: rzacrix. Ex-1-Ples that illustrated
our technique vcre presented.
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ABSTAT

Itn this paper Brockett 's feedbck invariaits of non iinear systes are
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to the mu.ltip la-input case.
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I-

n'roDuCTnOu The goal of this paper is to generalize the pre-
vious results to obrain a characterization of the

SBy means of state space coordinate changes and class of linear equivalents of multiple-input non-
feedback, a controllable linear system can be trans- liear systems. .ecently the authors were informed by
formed into decoupled ser'es_ of intesators. that Ls Professor E. Sontag about similar results obtalned by

Jaku!czyk and ft-spondek (7); we shall briefly discuss
i . :29 r.... 1. those results in the final section.

%I, -+ -EQUVALENCE
-. We consider nonlinear systems in R of the form

k+ . . . + k _, + " +k
-. .. .. ' where F defines a V" vector field and F(O) - 0.

A SF-tt'o~frm?2tic is def -,%d to be a ie
Xk 1 + + • " - deffenorphism which preserves the origin. 1. s-ystc

Z, is said to be F-rc.a d to another system :1

-hrs par:iculir form is sometimes called the Brunovsky on a neighborhood U C Rn' if there is a
cano.cal fr-=. It is also well known that the orders F,-trans-or-ation T - (T, , T......T. ) such
of zhese se.ies cf Ln.:erato:s are invariant =der the that for any state and control tra ctory

.-. (, ); the are usually called 'he (x.(t). . .. .m. (t), u,().... u..(t)) in U Cf
K_,Z--iA;r in-:.:"S. t , the image T (.:(t),.., u.j, u ( .

7n the literature. there have been *om-e efforts u..(,)) corresponds to a state ard control tratec:ory
,dce to ;enerz.-'i:e these !ne3r results to notlinear o! the system ".:, wIth Tn+ , . .• • n.4-. 'iin= :ht

uystcts.. Meyer. and Cicolani' (' showed that the class controls of r2. By arguments similar to thos; f ( J
of bloc,.-tr_4,-zlar systems can be transformed Into we have the following results.
te ...:v.z.v canonical o fom. Brocket: (W) discovcred
&- -r -..: :,.ss of :.-Va.ts (discussed later) and r'rorosi:on I
a.-, -*:e a necessary --id su!ficient condition for a A syste= x (x, u. ..... u) is --elated

.. r.lt.-ear r* -t= to be transfcred in:o a to a systo= j - (y. v'.......m.') i! cnd on:. if
S 21Cs cf ir.t ra:o.rs. By enlar;f.n the set of there it a t z an Tfo . T - T . .. ,.

tent r.-::.rns Su (6) n ta-ned a trill lar-.r e;uiv- Tn.) such that
a&.t.r :zc. Later in (C) the authors extended the 1. TI ......

T
n are independent of the con-

:; '.-..;. ns a-&nZ. also gave a vay tro.s
2. -he Jaco'i:m

T.-_

1 0
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is nonsingular near the origin of Rn"'  and
3. T satisfies the system of partial differ-

-ntial equations In this section we show tht the Invariants dis-
c covered by !rockett (4) are also invariart:s u -le

r 
oul

?Ti  F'-transfor.a ionb. First we need th' follCa ir.;
;x F - C1., , - 1 ..... n observation.

Observation I
where F - (FI. ..... F), C - (C. . Gn), end If a system E~i - F(x. u., u,) is
* C-T denotes the compoaltion. f-equivalent co a sysate of the form

Prcoostion 2

9Ne b.-ralation Is an equivalence relation. x . f() c±(x)oi(x, U. ,

With this equivalence relation we now examine then Z must take the similar form as
the equivalence classes that contain the controllable
linear systems. It is clear chat a nonlinear system
that is Y7-equivalent to a controllable linear sys- f " " jj,.,)*j(y. v .... vt)
ten is also F -equivalent to the Brumovskly canonical .i-
form of the linear system. More precisely, for such
a noulinear system This can be verfled by simple computations which we

leave to the reader. With this fact we can now
e " Fj(x2. . no xu. u1 ..... Um) g - eneralize Brockett's results.

Let. Ljj be the linear span of all the vec-
tor fields' t hat are Lie derivatives of

it is associated with a transformation f, , . ... , with the total degree of v ith
T - (TI. o. nu TTnx,. . Tof) and a set of respect to f being less than or equal to a end
"a positive eers (k,.., k.) such that by the total degree of * with respect to the &s
lemptti being less than or equal to .. For example

p- kt - linear span (f. gZ.. ., , (ad•f. 9.),

w-t . . .. (ad
1f. S). (ad~f. g.), . . ., (adif. gm))

wit£ h k.-O. w, e have

j - (2) Sd c- g (ad1 . G) Lg

(adif. &) - (adf,"(adi-1f , g))
and

-. YAere

af a
F u 1  . .. um) , t T p (3) 7 x

J-1 are the Jacobian matrices.

where p - 1 . . ., m. Observe that for each fixed Let S.,j be the subspace (pip - h(), h e1,j)
state x 6 P2, Eq. (2) is a system of n - m linear of Ra.
ecualcO=s w th constant coefficients satisfied by Theorm 2
F ...... F. As an ex.tenslon of the result in (5).

o '.ave mhe f ollowi .eeessa .y- cond~on. ' The dimensions of Si,! are 5"-Lvarisan.

Thec.-et I The proof is Omitted, zut we remark that esset-

I syStem ii - FL(x, u........u.), cially rockctt's pr~uz in 'i " -cirL. in U.- case.
i - 1.......0 is S"-equivalent to a controllable S o we exauine scue ;crma.: inc.si,-s nf the
line-r svsm--, the= F - (- .. . F.) must take j which we need In charac--"t thoe quv
tho form dass of Interest to us.

C.ven a cyst=- (f, ...... g) ! P U veI

F " f.(x) + $:£j(x)¢j(x.u construct a matrix cf vector fields

Z CC..'. .16 . ,
* , " -'"-O

.. .. -... .net "w'e *4o.-- ujl *' v e. t, ._______V.____"___ "___"____

:-.:"s ' .jt5 U1 .un... *.z." '"  ' ^ = ... : ., .

e. ... ..... ,;a seo .... rl w......-.
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Let bi deote the ith row of the matrix. in n
terms of Li.. we have Lt, - paen {I,,)
L, * " span lit, ,S ). etc. W.e ass me in the rest of/ ... gki 0,. !'k< ,
:t.e z~tr that the dimension of L., is cconstant on ___Xjj

sa=e neighborhood and define the following indices. j (6)

1. Indices a (a . . on, )  +p1 ,. Lp - 1a 1 P <

o d- inS. for 0 i < n- n

2. !ndices A * (0,. . .. .f T,+, (7)

8, -a n d  8 a 1 ".,.

for 1 I n- I

3. Indices y " (r, , Y) The nonsingularity of the transformation T In turn
Implies that the matrix

W i t h a n 0 - " -

4. Indices k MiC1 ,. , ) 9xg ,j. ..
- the number of 8. .1"J

with Bj i()
n n

Clearly.* by way of construction, the indices
( 2. . - .. are an increasing sequence.' Sx
By computation, it also can be shown that
(BS. . . .. in-1) is always a decreasing sequence. j"
and. tus.i :- 0 for all i. In this paper we are
moast Interested !z the case in which m0  m nd i eo nons zinglt.
%-1- a. Zf this is the case, one has Re, gin t he m- Lon

n-I aTi

an j-i- &J

ki- ncan be expressed as a dualirr product of fr and
vector fields, Eqs. (6), (7), and () are equivalently

2'JJ14 RMSLTS re~rriten as

We continue: the development berun in the second (dTi, SO) 0 * 1 S k S a,
section (F-equivalence). Suppose a syctem (9)
(f, g..... 0  is .7-equivalent to acontrol-al i ia i. p n
llzar systen associated with a set of (Lronecker)
indices (C,. . .... i) where kl,. , km are
positive integers and \±' £. T2i+ (1c)

0 and
n Fd&I. _. . (dT.l.

Equatios (2) and (3) then become LdTa. s..) . dT (11)

d4 smni . Id

(f. r l . + .. - is monsinsular. where d. " is thQ fm.,

and the pra(": T f) it

(, ,u . . . . . . g -*' n

(5)j

where '~. and

- 2.... ~ ULs -g the . - n. . a

E) ,.'- 9) ('dr, (&dlf, )

4 -- e'" . ' Ie en the.os =:: . (.)
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Theorem 3 Theorem 5
A system (f, g, .91. is r-equ.valent to If a system (f, . ... ,) satisfies the con-

a controllable linear cystem if and only if there is dirions in Theorem 4, namely.,
a se: of positive inteters kj, k". • *, k: with 1. a, . M.n - " z

1' 2. For each ± such that "i 0 0, L _
- n is involutive

1-2. then "-Ljl is involutive for every 0 < j I-I
and a scalar functions

",I+I a +1 a CONCLUDING RLMARKX;then is nvolutie for evr" 0 jT im  - 1

such that In this paper we have obtained a complete charac-
terization of these nonlinear systems vhich are

1. The forms dT_ + . T " 4" 5  + I are T-equivalent to a controllable linear system. These
linearly independent, 1 nonlinear systems are grouped into difference equiv-

2. (rip + (adif., )) 0 , 1 ;S j 5 a. alence.classes indexed by .7-inVariant indices.
P The conditions stated in Theorem 4 are weaker

0 < I j - 2, than those in the paper by Jakubcryk and Respondek (7).
Some of their conditions are redundant, as indicated

3. The matrix by our Theorem 5. Also their proof is an existece
proof, whereas ours is constructive in nature. Details

<d.1. ad. .<da, (.als . .) and explicit construction of the desired transforms-
(ad~. ii) (r~, ' I tions are omitted here. They will appear in our

. .. paper (8).

is onslagular, -vbera The authors would like to acknowledge a brief
discussion of this problem vith Professor Brockatt and

-2 the courtesy of Professor Sontag in providing a copy
p f k, 1 p , o . of the paper by Jakubczyk and Respondek.

L-0

Therefore, the problem of the existence of a REFERECES

transformation T becomes the existence of a posi-
tive integers -d = linearly independent e-act . i Brumovsky, F., "k" assification of Linear

io-s vLich satisfy the above conditions. Once these Ccntrollable Systems." rybcretrik (?r.hr), Vol. 3,

= one-forms are obtained, the rest of the transforms- 1970.

tio can be constructed by Eqs. (10). We remark that 2 Kal:an, 1L. E. . "Kronecker lnvariants and Feed-
in the proof of the above theorem one has to show that ac "i Orda. Dif onial. Loustins L. Wes
a transformation so constructed in indeed nonsingular. back," in Ordir- Differential Ecuatos, L. Weiss,

For details the reader is referred to our paper (8). ed., Academic Press, 1972.

Niext we come to another main theorem which gives
conditions on the characteristics of a system (inclUd- 3 Meyer, G., and Cicola-ni, L.. "Application of

ing the invariant indices discussed in the preceding Nonlinear System inverses to Aut-atic Flight Control
section - r-invariants) for being ?-equivalent cc Design - Systen Concepts and Flight Evaluations,"

a neie-v and Azolications c4 O-=-al Control in Aare-
linear Sstem. soace Svse.ns, P. Kant, ed., AGA~.ograph, 1960.

Theo--- 4
A sVs (f. g .is -equivalent o 4 Brockett, R. W., "Feedback Invarix.as for Fon-

a rn::o..llable lzar sysren h n contro.s if .d linear Syste.ms," IFAC CcnSre-s, Mealsinki, l17F.

o-:y if
-n 5 Su, .. , "On the Linear -;1alents c! :;cn'1.sea""* C - M. an-, * Systems," subz--tted to Ly$--. ant Control Letzcrb.
2. For each i such thar y, 0 0. the set of

vt:Lor fields 6 Hnt. L. R., -nd Su, R., "Clobal !A'spings of
Nonlinear Systems," submitted zo 1951 Joint Au"o.-1tic

..... (..d f- .g) (ad f,g 0 )) Control Cc.fercnce.

is ?VolutV. 7 jikubctyk, 3., and R*spoudtk. W., "Co Llna -
ization of Ccn:r-l. e't 3re--.nr.

I.ow suppose il - i: ! 2, and W1. "*...y,

L4! e*t d e -- a-s thzr vana.sh en the in:egr:1 B Hunt, L. S... R .l-iC~ut !.cL-

- associ:zt ! h 1,, n-.ely, the n'er.er- v.. ," '- ' o SIA. on Cc.ern &z

• -s'lf:.d of L. - 1. 1. One step of Lie derivstive -

- -: for.s L,(.h, . . . , Le( ). vh.h, by

dti.t-ioM of.. ........ , ha:t :ero d-.L:y

" ." - .. .. e'urC-, " -Z , d ±nVluti ','.
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CONTROLLABILITY OF NONLINEAR HYPERSURFACE SYSTEMS

L. R. Hunt*

ABSTRACT. Consider the nonlinear system

n-l
x(t) =f(x(t)) + u u1(t)gi(x(t)).x~o)

E 6M

where M is a connected real-analytic n-
dimensional manifold, f,g,..g are
real-analytic vector fields on M, and

ul'--'n-Iare real-valued controls, We

are interested in characterizing the largest
open subset U of M, if any, which is
reachable from x aind which we call the
region of reachab lty of our system from x o'
If the Lie algebra LA generated by

f~g1, ... Ig- and successive Lie brackets
has vector Space dimension n at x 1and
if f'gl",... I are linearly independent
at some point in M, we find the region of
reachability from x 0. Suppose U is the
smallest open subset of M with x U
so that '-U contains the integral man'fcids
of the Lie algebra L'A generated by

91.1 .. 0--1that intersect it and f1 assions
vectors on aU which point in the direction

*;esearch supported in part by the National Science Foundation

-,ncer NSF Grant MCS76-05267-A0l and by the Joint Services Ellec-

.rch-cs Prcgram under QNR Ccntract 76-C-1136.
SAqncrica Mwat,, a~: Socmr 91'
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L. R. HUNT

of 0. Then U is the region of reachability
from x for our system. Much of the work'is

involved in proving a similar result in the
more general ' case under the stronger
assumption that fg,. *g n-l are linearly

independent on the connected V' n-dimen-

sional manifold M.

1. INTRODUCTION. Let M be a connected real-analytic '-

dimensional manifold, fgl .... 'gn-l be Vw vector fields on

M, and ul, ... ,Un- l  be real-valued controls. The system

n-l
i(t) = f(x(t)) + Z ui(t)gi(x(t)), x(o) - x0 E M ,

is called a hypersurface system since the number of controls is

one less than the dimension of the manifold M. We assume that

the vector space dimension of the Lie algebra LA' generated by

f',gl,..gn-l and successive Lie brackets is n at x (i.e.

this Lie algebra spans the tangent space to M at x ) and that

f.g g -..gl are linear independent at some point of M. Re-

sults due to Sussmann and Jurdjevic [18) and Krener [15] show

that we can reach a nonempty open subset of M from xo . Let

U be the largest open subset which is reachable for our system

from xo . We characterize U by proving that U is the small-

est open subset of M with xo 0 0 (the closure of U in M)

satisfying i) aU contains the integral manifolds which inter-

sect it of the Lie algebra L'A generated by . and

successive Lie brackets and ii) the vector field f points in

the di~ectcr of 0 on -U. This set U is called the recior,

cf -eacra:-it't lrom x., and if j - M, the system 4s contrcl-

"at'e -o xO.

'he real-analytic theory depends on results provec for a sys-

n-l
.*A flx(t)) * ui(t)gi(x(t)), x(o) x0  E

-..re ,C,...n are 40 linealv indepe-tent sector zzeics
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HYPERSURFACE SYSTEMS

on a connected W*' n-dimensional manifold M.7 For this case

we show that the region of reachability U is the smallest open

subset of M with xa E U satisfying U is an (n-l)-dimen-

sional integral manifold of . and f assigns vectqrs

on U in the direction of U.. We view the control problem much

as one would the famous Holmgren's Uniqueness Theorem (see [4])

of partial differential equations. A solution of the partial

differential equation is unique up to the characteristics. A

similar situation occurs in the study of uniqueness'of analytic
continuation for the CR-functions on a V'* real hypersurface in

tn, n > 1 [111. In this instance one gets uniqueness up to the

characteristics of the tangential CR-equations, which are the

integral manifolds of a subbundle of the tangent bundle to the

hypersurface of codimension 1. If fgl,... gn-1 in our system

are linearly independent on M, then . give us a

subbundle of the tangent bundle of codimension 1. Thus the only

possible way to have a set which is not reachable from xo is to

have it disconnected in some fashion from the reachable set by

an integral manifold of g Of course such integral

manifolds may not even exist in which case we expect controllabil-

ity of the system from xo. Michael Freeman has results giving

conditions at a point for there to be an integral manifold of a

collection of real-analytic vector fields through that point.

A nice expository paper containing the problems considered in

this article has been written by Brockett [1]. Related results

can be found in the work of Krener [15], Lobry [16], [17], Suss-,12, r 13]. Imeorerns

.an and Jurdjevic [18], and the author L2], 1 I

concerrirc t-e oroblem of local control'ability aionc a reference

trajectory are due to Hermes [7], [8], [9]. Results cealing with

control theory for linear systems are in [14]. This oaper is

arranced in the following way. In section 2 we give definitions

and a relevant examole. Section 3 contains a local tneory con-

cerning the boundary of the region of reachability U of cur le

syster, .rider the assurtion that the bcundary is n rear one

of its :cirts. in section 4 we state a tneorem fror. [I]
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L. R. HUNT

concerning a subbundle of the tangent bundle to M and allowing

us to remove the Vrestriction. Then we prove our main result
for the V" case and give several applications. Section 5 con-
tains our result for the real-analytic system on a real-analytic

manifold.

2. DEFINITIONS. We shall use the classical Frobenius Theorem
and Chow's Theorem [23. For a statement of these results and

their applications to control theory we refer the reader to [73.

Of interest to us is the system

n-i
i(t) - fVX(t)) 4 ui(t)g1(x(t)). x(o) -* E M (2.1)

where M is a connected Vm n-dimensional manifold,

f~g, ..Ig-1are V 0vector fields on M, and ulI...un-l
are controls.

Let T(M) be the tangent bundle of M with TX (M) the

tangent space for x E M. Recall that if X is a vector field

on M (i.e. X is a section of T(M)) then a is an -.ntegraZ

czave of X if a is a V mapping from a closed interval

I cR into M such that dal X(o(t)) for all t E 1.

DEFINITION 2.1 [18]. If D is a subset ofl T(M), then w

.ecraZ cuia.Je o- D is a rc=i'ng a f -- a re.aZ i ter aZ

[tt ir.:c M such that there tis t <

-;e ~ctcr fieds X1 I... ,Xk .,n 0 wit :he restrtction Of

It _-Y~ _Y: t:ra 0.0Z".4C Eec

:EFVN1!71CN 2.2. Ls: D e a ube T(M) nd :

x M. r :ci: x C M is -reaahab:8 -r= xM i f :hesre -s

-.tcr' rrea c.,f D adsorn T ac ir the ir:em-a: c

a 5-crh :r.z: a(o) x a (T) - x. cs:A of 14 i.s

f-e:~ ro- x if e-cr zz:oint x £A s a±e x

Since nhe IZ we ccns'der IS the s;;set of gi)ver ty

t-e vector fields of a system of the fo~ '2.1) we crop the 0

" -- eac ,ate. we Shall !nake assu::tc-s cf f,c,.,
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HYPERSURFACE SYSTEMS

that assure us that we can reach an open subset of M from xo.

OEFINITIO.2.3. Ah Za-gest open szb"et U of M which is
reachabZe from x0 is oalZZd the region of reoahability frg_ x,.

rf U a M, we say that the system is controZZabZe from xo .

DEFINITION 2.4. Let 0 be an open subset of M and let

x C A such that aO isa Ir -mifoZd me= X. Then f

is not tangent to 30 at x and if there exists an open neigh-
borhood W of x in M such that the vector assigned by f at

x, projected into M (by the emponential map), and intersected

with W-{x) is contained in 0. If 0 is a Vd manifold nd

if the above is tefo every x C 30, then f points in the

direction of 0 on 30.

DEFINITION 2.5. Let 0 be n open set in M ard et x aC 0.
Th n f points in the direction of 6 (ortowards ) at x
if there ise n open neighborhood W of x in M such that the

integraZ zve of f s to tng at x end intersected with W is
contained in 6. If this is ,rue for alZ x C a0, then f

Points in the direction of 0 on 30.

If f and g are V vector fields defined on M, we

define the zis bracket of f and g by [f,g] f- - g.

A set of ' vector fields (f, ...fr } is called invoZ-tive

if there exist r T functions Yijk(X) on M such that
[fif j (X) - Yijk(x)fk(x) for all i,j,l!5, jsr, i # j.

We introduce one example from £1] which may help us understand

the oroblems invclved r tryina .o eterteine the rocr.ic e set

of a S.'Ste-.

"XA .PL. Consider the system

+ U(t) ~ 12

f(x " + u(tg(x(t))

115
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L. R. HUNT

where M is the.set F2 . {(o,o)). Notice that f and ..g ara

linearly independent on M. Brockett [l) states that if x

(xl,x2) is in the positive quadrant, then the region of reach-

ability U from x0  is contained in this quadrant. The inte-

gral curve of g through a point on xI  0, X2 > 0 is the

line (o.x2 ) with x2 > o. Moreover, the integral curve of g

through a point on x2 - 0, x > o is the line (xl ,o) with

x > o. These together form the boundary of the first quadrant

in M. The vector field f assigns vectors to this boundary

which point toward the first quadrant. Thus there is no hope of

a solution of the system starting in this quadrant to leave it.

We could give more examples at this time, but they would all

hint at the same conclusion. If fgl,... gn-I are linearly

independent in the system (2.1), the important items to check

appear to be the integral manifolds of gl .... gn-l" if any

exist, and the direction of the vector field f on these inte-

gral manifolds. We next examine these conditions for regions of

reachability with fI boundaries.

3. l BOUNDARIES. Suppose we consider the system

n-1
i(t) - f(x(t)) + I ui(t)gi(x(t)). x(o) - xo C M, (3.1)

where M is a connected le" n-dimensional manifold,

f'I ..... gn- are re linearly independent vector fielcs on

r, and u, ... ,Unl are controls. It .s easy to see -nat we

can reach an open suoset of M which contains x in its clo-

Let U be t-ec;' On cf reachaility c' :e nyoe-s -a:e st's-

te- cven in ,3.U. Let x e an element c' tne bouncrd'r C

U, ard assu:'e ;J is r' is some open neign~ornood , x

Ir '-. .rs Just ,entioned we need to consider the direct ons of

cn W nl ;U and the Possiollty of having an -tecral -ani'old

- .. thcugh x. Recall that a difere--, ale s; -

-of 's a. - r z C

'S 4s te stace spanned by 9j, ,;n1 at c, ec YES.
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HYPERSURFACE SYSTEMS

For a more thorough discussion of integral manifolds we must

consider the Lie bracket which we defined earlier. If gi and

li are different vector fields on M then
agi

!a g

[gig] ", gj " = gi a

This may or may not give us a "new" direction in which to move

(see [1l), depending on whether the collection {gigj} is

involutive or-not. Let L'A be the smallest Lie algebra gener-

ated by taking successive Lie brackets of the gl,.... gn1

given in equation (3.1). If we get a vector space of the same

dimension at each point of M, then L'A is a vector subbundle

of the tangent bundle to M.
The following definition is essential to our work. Let S1

and S2 be V1 submanifolds of M of dimensions k and n-k
respectively.

DEFINITION 3. 1. Pre mcifo.ds Sl w S2 ittersec? trtm-

ver'scZ,, ct c pit y ( Sn S2  if ad onZu if Ty(S I ) *
Ty(S 2 ) a Ty(M). Here 9 denotes the direot eu.

We now prove a result under the assumption that locally our

open set has a V I boundary.

THEOREM 3.2. Let 0 be an open met in M whio. is reachab:e

.ro. xo for asyte.- (3.1), =.d et x be ao:ra.'s point ir

o. Su,.posc there -o.s ar en re-.'bor,,ood W of x L,. M
such t± _t w n ;0 rea l. -- eoa su,~aifoZd

:: .." .-. ?ow.e o.^ :;:s .:: ''.i-':. i :-x¢os h :;k.. 0
re~ of : eoo 0

.' r r~r. of LA a: x 18 n,

iti :he in.efrca cas-.e -- sca I 1 4 is n-1i:s toars-

.'enea to ;O at x,

04)3 f azsi,-.a z-. x a ec::r poir.tir.o in th~e direct ior

;roof. If i) holds then the fiber dimension of L'. at all
:C,,ts in scre cen ieichborhooo of x in M must be n (since

n is ,a,)*i,-l). Thus '0 cannot be an intecra.le manifold of
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gl * ..... nea'r x by the Frobenius Theorem, and there exist

a point y 3 a0 arbitrarily close to x and a gi l'l n-1,

such that the integral curve of gi is transversal to 30 at

y. Hence, i) reduces to ii).

Next we assume that ii) is true. If the integral curve of

g,. chosen arbitrarily from the set gl'.... n- and renumbered

if necessary, is transversal to 30 at x, then it is trans-

versal to 30 in W n lO, W being an open neighborhood of x

in M (this W may be smaller set than our original W). Fol-

lowing the integral curves of gl that start in W n 0, a

reachable set from xo, and continuing past W n a0, we have

that 0 cannot be the region of reachability from xo. We have

used the fact that we may as well assume we can move along the

integral curve of any g, since ui  is unbounded.

If iii) holds at x, then it holds for all points in W n 30,

and the argument given in ii) with g, replaced by f implies

the desired result.

It is interesting to note that condition i) does not depend

on W n 30 being a V manifold.

We seek a minimum number of necessary conditions that an open

set U c M be the region of reachability from x..

THEOREM 3.3. Let U be the region of reahabiZitt from x
1 -. 0

C! the syistem (3.1). Suppose 3U is a W mc i.- Zd for an

:en neichic.rood W of x E aU in M. .nen W n U is.

r.-e-: -.. f gl. .gn- ad the eccr field f

as- t W I u -;CTr rc:rt-.o ir .n ; ec±o C, U.

-=:of. It f-.2ows -or. part ii) of the creceding tneorer,

:.at n i U is an integral manifold of gl..... Hence

is act.a~ly a V' submanifold of M. Since

'orn' a linearly independent set on M and

.-U in an intearal manifold of , - art .i.)

- 9s vie state!rent concerning f.

.e s ", orove in the next section tnat the nyoothesis ZU

4s near x 4s superfluous.
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HYPERSURFACE SYSTEMS

4. THE RESULT FOR 'e MANIFOLDS. The following theorem

was proved in [11] for use in the uniqueness of analytic contin-

uation problem for CR-distributions on CR-hypersurfaces in

9 n > 1. The statement concerning a V boundary can be

relaxed to V, or we can simply replace V 1  by 2 every-

where in the preceding section.

THEOREM 4.1. Let M be a V manifold of dimension n,

and ,et H be a u.bbdZe of the tangent bud7e of M with

fiber (vector space) dimension n-i. Suppose U c M is az

open set with the property that if 0 a U is an open set hving
2- boundary, then for ea h x C aO n 3U we have Tx(aO)

H (the fiber of H at x). Then-for each point xE 3U,

there is a neighborhood V of x, a rea-vaZued funmction

h E V"(V) w.th nonzero differentiaZ for all points in V. are

a closed nowhere dense set E 'R such that

(1) 31U n v z {x E Vlh(x) C E),

(2) for each LCECE, S9 X(x C V~h(x) a 1 is~ an
m01ifo d of H; i.e. the bowidmry of U is foliated by

- - manifolds of H.

We now restate Theorem 3.3 under more general conditions.

THEOREM 4.2. Let U be the region of reachbility fro-- x0

of the s~ws-:e?- (3.1 ). Ther aU is a le ntegraz

'f g7.-: f asuigns sec :.s c U .--'e ::=: =:

:'e c~on0o U.

Procf. Let H te tne suobundle of 7',) soanned t,.

. ... If 0 is an oer, subset of U wit a -

ary, nen an apolica:icn of Theorem 3.2 and Tneorer 4i ,..'es vs

:he stateo conclusion.

We nave the following imoortant corolnary, the oroof of which

is obvious.

-~CLA. ,, "2. .:e Hc~:is -' *-, -
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a) Thne c~losure of the integral manifoZd in M is foZiated

by intearal manifo~ds.

b) rheo2vectors assigned by f on this integraZ manifoZd

allm~ye point in the same direction rektive to the integraL mni-

fo~d (i.e. if this manifoWd divides M into two components, the

veCctors musat point towarmd the same component).

Then the system (3.1) is controL~abZe fri:;m ay x 0 E M.
Let A ddenote Hausdorff measure (see [3)) in dimension d

on M. Suppose L is the set of points on which the Lie algebra
L'A has dimension n-i. Then L is a closed set in M, and

the Frobenius Theorem implies that L contains the integral

manifolds of gl -gn if any exist. For such an integral

manifold we must have A - (L) > o, and we have proved our next

result.

THEOREM 4.4. If A n (L) - o then the system (3.1) is con-
trcLZcabze from 0-Y X0 e M.

Notice that if M is oil dimension 2, we always have integral
curves of g for the system i(t) - f(x(t)) + u(t)g(x(t)),x(O)
X x0. Thus Theorem 4.4 does not apply in this case.

We state two theorems from (1) and indicate in a rather super-

ficial way the relation of these theorems to this present work.

We restrict our attention to dimension 2 and to a hypersurface
sys temn.

THEOR.EM 4.5. Su. pose f ==7, g ='e vectcr fieds on a cr

neozed To .ea: 2-de_.nsirc-.~ -arif.oZd M. Sui~ose o:a:~o

0
-;: (X(t") -, -c~ a yeas: X .~e :hi

-.eSir: ro-r X0 of -;he sustem i(t) - f(x(t))

Iu(t6'g(X(t)) I' .; :e Set iuW.en bY :AcW'S :herC_.

Ke start at x 0 N and take the inteorai curve of a

-*r.;Cr". X,. SLucrose this curve divides V .r,,tc Iwo connectec

::,c-ens " and M. :f the solution cl iWz, f*~ t

S~a-ts at X0in the direction of M + tner s'ce the sclution
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HYPERSURFACE SYSTEMS

is periodic, there is some point on the inteqral curve of g

through x0  at which the vector of f is in the M' direction.

Of course, this is in keeping with Theorem 4.2.

Hirschorn proved a very nice generalization of the following

result, which we state in dimension 2.

TiHEOREM 4.6 [1O]. Consider the ystem

i(t) - f(x(t)) + u(t)g(x(t)), x(o) - x 0

for a T rea 2-direnuionaL manifol4 M. Suppose [f,g] = hg

on M, wjhere h is a W'4' fiemction on M. ',hen the reachabZa
set fromo x0  is obtained by taking the integra, curve a of f

tirough x0 (in the positive time senee and then aLL integL

cu-ves of g intersecting a.

This 2-dimensional version can be seen in light of the follow-

ing result found'in [6]. The one-parameter group of transforma-

tions generated by f permutes the integral curves of q with

a change of parametrization if [f,g] - hg for some Vo func-

tion h on M. Interpreted freely, once an integral curve of f

passes through an integral curve of g it can never return.

This seems to be in agreement with Theorem 4.Z.

An obvious question to ask is if the necessary conditions of

Theorem 4.2 are also sufficient.

THEOREM 4.7. ,er x E M and sur ose U is the s-,i.est

-pen su...ae of M with x E U sat.sf'inc ;U 's -. ntecrai

-ai-lo d f ql n d f assigns vectcrs to 3U i tc-

c U.~ U -.' the recio~c- C fr-

0  r -.he szr e " (3.1).

In the statement of :nis theorem, we add the assu-.ticn tnat

if U 'I., every open nei'ahorhood of any point E iU con-

tains points from U and the comolement of U. G. Stefani and

A. Baccioti have pointed out that the correct conclusion to the

teorer as stated above is U c region of reachatilitv interior

Cf U. The author wishes to thank Pro-esscrs Szefan4 arn

Sacciot4 for their c.*ents.
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Proof. We know that we can reach an open set and by the
theory developed in this paper we have that we can reach U. The

important fact to remember is that to leave U we must break

through 2U near some point x C 3U. In the system i(t) •
n-i

f(x(t)) + ui(t)gi(x(t)) at the point x we can move in the
1., n-

directions fgl1..... gn-l1 "g1 .... "gn+ and f + ' ui(t)gii-I

for the appropriate finite ui's. Since 3U is an integral

manifold of g1,...,gn-, Lie brackets like [g1,gi] with

i 0 j will give us no "new" directions in which to move from x.

Also, since f'gl . .gn-1 span T(M), the brackets Cf,gi ],

i -1,...,n-1 will yield vector fields which are linear combina-

tions of fggl.... ggnl (the same is also true for successive

Lie brackets. The only linear combinations here which can be

used at x are those already indicated by the system.

The proof of Theorem 4.7 is applicable only for hypersurface

systems (or certain general systems that behave like hypersurface

systems). We prove results like those in this paper for general

systems of the form
x(t) - f(x(t)) + u i(t)gi(x(t))

in £12] and [13]. Such a system with m<n-I is more difficult

to handle than a hypersurface system, and we make stronger

assunptions in order to prove theorems concerning controllabil-

i ty.

.. REAL-'ALY ..C MANIFOLDS. We examine the system

n-1'((t) = x t ) + : ui (t)gi(x(t)), x(o) - x0  E M .i

i-I

w.ere M is a connected real-analytic n-dimensional manifold

are real-analytic complete vector fields on M,

ar.d u1 are controls. We take the Lie aglebras L,

an- e * as defired ;reviously. If the vector soace dimension

of L. at Yo is less t.an n, we aoply te real analytic
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version of Chow's Theorem and refer the reader to [13]. We prove

the following result, which is an improvement of Theorem 4.7 for

the real-analytic case.

THEOREM 5. 1. Asme the vector space dimension of LA at xo

is n and that fagre... n ¢. Zinea.Zy indepen ent at some

point of M. Let U be the sm.Lest open subset of M w.th

xo 0C 0 satisfying aU contains the integraL manifoLds of L'A

which intersect it (and which are given by Cow' s Theorem) and

f point in the direction of 0 on BU . Then U i the

region of rechabi~ity from xn0 for the system (5L.1).

Proof. Because M, f'gl .... gn-I are real analytic,

fl'g 1 .... g are linearly independent at some point of M,

and M is connected, the set of points P in M at which

f'gl' .... gn-I are linearly dependent is nowhere dense in M.

Of course this set contains the points where the dimension of

LA is less than n. Since the dimension of LA at x is n,

this is true for an open neighborhood of x. in M. From

Krener's [15] proof we can reach an open set 0 in M which is

arbitrarily close to xo. By remarks made earlier in this proof,

we may as well assume that fg 1 9 ... Ign- are linearly indepen-

dent on 0. Let O' be the largest connected component of M

containing 0 on which f'gl.'gn-I are linearly independent.

Choose a point x 0 and apply Theorem 4.7 with x replaced

by xI and M by 0' to get the region of reachability U' of

tne svste- ro, x in 0'.

We exaine the boundary of U' in M, wnich ,as two cc,-o-

nents SU' r p ana oU' n p, where P denotes tne coplement

of P in M. if U P is a ncnem:ty set, Theorer 4.7

4r-nlies that BU' n P is a (n-i) dimensional integral manifold

o a1 ..... n-i and f points towards U' on :U' n 5.

We assume that ;U' n P is nonempty and tat %U' A P is a

rel-analtyic (n-i) dimensional manifold in an coer, neiohborooc

f a point x E ;U, ,1 P. if the intecral curve ^f scre

i :s n-i, is transversal to ;U' n P at x or 4f f

-ssicns at x a vector w ,ich does not ;tint towards U,
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arguments like those given in the proof of Theorem 3.2 show that

we can reach an open set in another connected component of M

like 0', and we simply start all over there.

Thus we assume that the (n-l)-dimensional manifold parts of

WUP n P contain the integral manifolds of L'A which intersect

them and f points towards 0' on these parts. Let xE 3U' P

and suppose the unique integral manifold N of L'A through x

contains the integral curves of f that start.at every point of
N.. In this case we have the vector space dimensions of LA and

L'A agree on N and if we reach any point of N, then we can

reach all points of N (this is the important part of the real-

analytic theory in [13]). Then N will not be in U if 3N

contains the integral manifolds of L'A that intersect it and

f points in the direction of N on aN. Of course this means

that if 0 and 3N intersect, then the points in this intersec-

tion are in aU and satisfy the required conditions on the inte-

gral manifolds of L'A and on the direction of f. An easy

example of such a manifold N is a common equilibrium point of
f'gl.... gn-l' which is certainly not reachable.

Hence we have that 3U' n P contains the integral manifolds

of L'A (given by Chow's Theorem) which intersect it and f

points in the direction of 0' on 3U' n P. Therefore ?U'
must consist of the intecral manifolds of L'A intersecting it

eno f ooints towards 0' on WU). A repeat of the proof of

Theorem 4.3 found in [12] shows that we cannot reach an ooen sub-

set of M in fror x,.

.ecal there is an .ern nreighborhocd of x0 in on wrich

cne di.en4sCn of LA at xc  is n. .rbitrarily c'hse :o any

;o'r.: in tnis neighborhood that can be reached fro- xo  is an

coen set w.ich 4s reachable from xo. Thus we can neacn an open

V of !e which contains x in its closure, and we -ay assne

that ;V corcavns the intecral manifolds of L . r:e-Sec:ic

"ond f :z.nts towards V on PV. We reed to s-c that

'1, , ard we know that x E r I

S E V n U, ther an open subset a' car :e -eacet.
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By the theory developed in this paper U is reachable and no

larger open subset containing U of N is reachable. Also V

can be reached and we cannot leave V once we get to it. Hence

we must have V a U. If xo 0 EV n U, we reach an open subset

of M arbitrarily close to x0  (this Is how we found V) which
must be in U. The same proof just mentioned implies V * U.

Suppose that xo e aU. Then the integral manifold of L'A

through x0  must remain in BU and the integral curve of f

starting at x0  (and moving in positive time) moves in 0. If
the curve for f reaches U, then we know we can reach an open

subset of U, which will also be an open subset of V by the

way in which V was formed. Above arguments show that we have

V a U.
Assume that the integral curve of f starting at x0  stays

in U. Taking the unique integral manifold of L'A through

each point of this integral curve keeps us in aU. Let N' be

the set defined as the union of these integral manifolds of L'A.
At each point of N' we can start an integral curve of f. and

we suppose that all such curves remain in 3U. We can continue

to repeat this process and we assume that we cannot leave aU.
Perhaps Lie brackets like [f,g] and higher order brackets will

allow us to get out of 3U. Helgason [5] interprets the Lie

bracket [f,g] at a point x as the tangent vector to a curve

segpent (starting at x) and moving in the g direction, the

f direction, the -g direction, and then the -f direction

a"! for t units of time. Thus Lie brackets will not helo us

reach ar :zen sutset of M. Since we Know that we can reach :!e
c:er set V, an , ,tecral curve of f rust take us into U.

Tnce we nave tris, we know that V r U.
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MULTI-INPUT NONLINEAR SYSTtMS

L. R. Hunt and Renjeng Su

Abstract

Consider the nonlinear system

m
x(t) = f(x(t)) + I ui(t)gi(x(t))

i 21

where fgl, gm are r vector fields on some neighborhood of the

origin in R n and f(O) = 0. We present necessary and sufficient conditions

for this system to be transformed to a controllable linear system. Our

results are constructive and depend upon the solutions of overdetermined

systems of partial differential equations.

1-
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Global Transfor-ations of Nocrlinear Sysce-MI

L. R. ELM" AM~ REM _G STU

Abstract.- Recent resul~2ts have establ.ished nacessary and sufficie:t

conditions for a nonlinear system of the form

f f(x W)) + U (t)g(x (t)

with f (O) - 0, to be locally equivalent in a neighboorhood of the ;z-git

in R to a controllable ineLr system. We combine these results vith

several versions of the Slobal. inverse Itzaction theorem to prove suffi-

czient conditions for the transformation, of a nonlinear system to a linear

system. In doing so we introduce a techanique for constructing a trans-

--maion under the asstptious that {rg,(f,g], . ,(ad~f) sa

an n-dimansional, space and that {gk~],..~. adn f.,g)} is'a=

involutive set.
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CONTROL OF NONLINEAR TIME-VARYING SYSTEMS

L. R. Hunt and Renjeng Su

Abstract

Consider the time-varying nonlinear system of the form
m

'(t) = f(x,t) + Z ui (t)gi (xt),
i=l

with fgl,..., gm being C" vector fields on Pn l  We give necessary

and sufficient conditions for this system to be transformable to a time-

invariant controllable linear system. In order to control the nonlinear

system, we map to the linear system, choose a desired control there, and

return to the nonlinear system by the inverse of the transformation.
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TRANSFORMATION OF NONHOMOGENEOUS NONLItEAR SYSTEMS

R. Su, G. Meyer, and L. R. Hunt

Abstract

The problem of when a nonlinear system can be transformed to a

linear system is treated here. Previous results are further

generalized.

FA~LC~4il- G F- kA
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ABSTRACT

Sufficient Conditions fo: Controllability

L. R. Hunt

The problem is to find sufficient conditions for the system

m
kt)= f(x t)) + u (t)gi(x(t)) x(0) = 0  Mi=li

to be controllable. Here M is a connected Cen-dimensionai mani-

fold, f, g .. ,g,, are complete C vector fields on M, and

u -... ,u  are real-valued controls. If m - n-1, M, f, g,'.'''

g, are real-analytic, M is simply connected, and gl '-- -_.tt.

are linearly independent on M, then necessary and sufficient con-

ditions are known. For the case of our. system with general m,

we ass-=me that the space spanned by the Lie algebra L, generated

by f, a ...... c and successive Lie brackets has constant dimen-

sion P on M; and the algebra L' generated b: c in. and succes-

. '-- racke:s 'as constant diens on '< . -f M' = ,

::-.-:.'S Teren implies controllabilitv for a =-dimensional sub-

- f . cc.:nain f ' < p, suf-:c:-:_$.-ons
- -inc :c..a uC zicn a: ce:--i "i-~. :ra:.-ezs a;

.- ere -.e " :.ec:zr f'eld f is tancen : to ."e -e ra- 7..

. re ,.:e ass'-e tha: ev.... :- a - - i f L.

.. . . .. .
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ABSTRACT

n-Dimensional Controllability with (n-1) Controls

L.R. Hunt

Let M be a connected real-analytic n-dimensional manifold,

f'gl'" ""'n-i be complete real-analytic vector fields on M which

are linearly independent at some point of M, and Ul,... ,Un_1

be real-valued controls. Consider the controllability of the

system
n-i

i(t) = f(x(t)) + E ui(t)gi(x(t)), x(O) = x0 cM.
i=l

Necessary and sufficent conditions are given so that this sjs-

tem is controllable on any simply connected domain D contained

in M on which gl" " n- are linearly independent. These

conditions depend on the computation of Lie brackets at those

points where f,gl,...gn-1 are linearly dependent.
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3. JSEP Funds: $25,875
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6. Summary:

A decade ago the author initiated a research program directed at the

formulation of an algorithm for fauLt diagnosiz in analog ciZcu" and sy6tem6

which was capable of running efficienty in the dual mode "depot/i ied"

envwironmemt associated with most DOD maintenance systems. Specifically, it

was desired to formulate an algorithm which:

i). is applicable to both Zineat and nonlineaA systems modeled in

either the time or frequency domain,

ii). can be used to locate multipZe hard o'r soft fauts,

iii). and is capable of locating failures in "repZaceable modu/e's"

such as an IC chip, PC board, or subsystem rather than dis-

discrete components;

all of this being achieved with a minimum number of teut pointz and at accept-

able computatiotal cost. Although a number of algorithms which achieve these

goals in the linear case have been proposed by the author and others, little

progress had been made in the nonlinear case until the past year. During the

past year, however, we have found a long souqht mechanism for incorporating a

SiaUute bound into a simuiZaticn-aftet-tc.t aZgov.ithm thereby combining the
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best attributes of the classical simulation-before-test and simulation-

after-test algorithms into a single package. Indeed, the success of our

simulated experiments with the new algorithm has been phenomenal; and, as

such, we believe that ou new aogo ithm tept6ent an e.entiaUy compZeyte

4o tiLon to the anatog 6acuit diagnosZ. pxobtem.
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Fault Diagnosis in Electronic Circuits

R. Saeks* and R. Liu**

During the past quarter century the engineering ures manifest themselves in the form of com-

community has been witness to tremendous strides ponent outputs which are either "stuckat-one" or

in the art of electronics design. The graphical "stuck-at-zero" and/or shorts and openass. Under

algorithms of the previous generation have given such an assumption a theory for digital system

way to the modern CAD package, the breadboard maintenance has been developed and practical

has been subsumed by the simulator. Indeed, even fault diagnosis algorithms are in the formative

the universal building block has become a reality. stages of development. Typically, one hypothesizes

To the contrary electronics maintenance has changed some limit on the number of simultaneous faults

little since the day of the vacuum tube, remaining and then simulates the responses of the UUT to a

the responsibility of the experienced technician family of test vectors for each allowed combination

with scope and multimeter. As such, our ability of faults. The actual responses of the UUT are then

to design a complex electronic circuit is quickly compared with the simulated responses to locate

out-distancing our ability to maintain it. In turn. the failure. Although lacking in asthetic appeal
the price reductions which have accompanied the above approach, termed fault simudaion, is

modem electronics technology have been paralleled ideally suited for the maintenance environment.

by increasing maintenance and operations costs. wherein, the actual simulation process need only be

Indeed, many industries are finding that the life done once at the factory or a maintenance depot

cycle maintenance costs for their electronic equip- with the simulated response data being distributed

ment now exceed their original capitol investment, via magnetic tape to the various field locations

Given the above, it is quickly becoming apparent where the actual test actual test is conducted. As

that the electronics maintenance process, like the such, with the aid of some sophisticated software

design process, must be automated. Unfortunately. engineering, this apparently "brute force" approach

the 50 years of progress in circuit theory, on to the fault diagnosis problem has slowly evolved

which our electronics design automation has been into a workable concept 4 . Indeed, at the present

predicated, does not exist in the maintenance time a number of automatic test program ganer-

area. As such, the past decade has witnessed the ators which classify faults, choose test vectors, and

inauguration of a basic research program to lay the carry out the appropriate simulation (often in a

foundations for a theory of electronics maintenance parallel processing mode), are commercially avails-
and a parallel effort to develop operational elec- ble and, as such, the automated maintenance of

tronic maintenance codes. digital electronic circuits is becoming a reality4l.

Thus far the greatest success has been achieved Unfortunately, the above described success in the

in the digital electronics area, wherein the fnite digital world has not been paralleled by progress

state nature of the UUT (unit under test) may be in the analog world. Indeed, test engineers com-

exploited"'. Typically, one assumes that all fail- plain that while 80% of the boards are digital, 80%

Texas Tech University of their headaches are analog and hybrid. This

University of Notre Dame difficulty arises from a number of characteristics
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of the analog problem which are not encountered analog fault diagnosis algorithm is an inverse func-

in digital circuits. Indeed, in an analog circuit: tion of the number of test points at which mea-

Ci) there is a continuum of possible fi lurea, surements of the UUT may be made. Indeed, if

( ) a component may be "in tolerance" but not one lets n be a measure of UUt.I complexity (which

nominal, may loosely be taken to be the total number of

(j) complex feedback structures are encoun- terminals for all of the circuit composmta) then

tared. if one has acem to 0(n)(tL) test pait the fault

(rv) simulation is slow and cosdy. diagnosis problem can be rosolved .sing lnamr

( po t-fault component characteristics may algorithms?"
' . Moreover, by combining such alg.-

not be known. rithms with the above mentioned linear algorithms.

(vi) and a fault in one component may induce acceptable computational efficiency can be obtained

an apparent fault in another with 0(m) test points where m is a meanure of the

Items (i ) and (j) imply that an extremely large complexity of the "nonlinear subsystem" of the

number of simulations will be required for analog UUT)n. Although such algorithms can be dee-

testing. Items (i) and (iv) suggest that these tive on the typical academic example a "real world"

simulations will be far more expensive than similar PC (printed circuit) board does not have termina

digital simulations. Finally, items 'v) and (vi) space for the 20 or 30 test points which are

indicate that the simulation of a post-fault circuit required even for a routine board made up of

by itself may not be a tractable problem. As discrete components and/or SSI (Small Scale late.

such, it is by no means clw that the kind of gration). Although the problem can be partially

"brute. force" fault simulation algorithm associated alleviated by making internal measurements with

with the digital problem will be applicable to the the aid of a "bed-of-nails" tester it has been our

analog or hybrid case. experience that such testers cause as many failures

As an alternative to fault simulation, a number as they locate while their applicability to two-

of academic researchers have proposed a variety of sided. multilayer. and coated boards is severely

"post test" fault diagnosis algorithms, wherein. an limited. As such, we would like to limit the

"equation solving like" algorithm is used to locate number of test points to the terminal space

the faulty component given the test data from U available at the edge of a PC board. On the other

UT2
).
$
)
. Although these algorithms are, in some hand, the UUT complexity, n, increases with the

sense. "smarter" than the simulation algorithms, area of the board. As such, the number of test

most of the required computing must be done in points required by an analog fault diagnosis algo.

the field after the UUT has been tested. More- rithm should increase at a rate of no greater than

over, these computational requirements must be 0(nl s). A further study of the possible tradeoff

replicated each time a unit fails. As such, the between test points and computational cost appears

success of such "post test" algorithms is contingent in references 11) and 12).

on reducing their computational requirements to Unfortunately, all cumputationally acceptable

a bare minimum. Although no system is yet "post test" algorithms which have thus far been

operational, with the aid of the powerful linear proposed have test point requirements which grow

circuit theory developed over the past half century, linearly with UUT complexity (assuming that m

a computationally efficient solution to the fault grows linearly with n). As such, many researchers

diagnosis problem for linear analog circuits appears are looking at the classical fault simulation algori-

to be within reachl"z. Unfortunately, no such thins with renewed vigor. Indeed, these algorithms

light exists at the end of the nonlinear tunnel, have minimal on-line computational costs, while

wherein progress appears to be limited by a the number of test points employed, can easily be

"computational complexity/test point" bound. (1 1) f(n)-O(n) means f increases in the order of

Not suprisingly, the computational cost of an n; more precisely. fn)1:5clnl for some c>O.
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kept below 0(n21). The difficulty lies with the 4) Greenbaum. J.P..: ComPuter-Aided Fault Analysis
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zWROOUCTION gorithm w bch is used only in the initial design
of a circuit or system, a CAT algorithm lives in

%fter a half century of neglect by the electronics an operational environment and thus must be used
munity the past decade has witnessed an expand- repeatedly each time a system fails. As such, a

jag effort in the analog fault diagnosis ares. viable measure for the computational cost of a CAT
Indeed, the ever increasing complexity of else- algorithm must distinguish between on-line computa-
tromic circuits combined with the decreasing avail- tion which is done in the field and musat be repeat-
,bility of trained maintenance technicians has ed for each unit under test MUT) and off-line com-
pushed Com e- aidd te4tiM (CAT) to the fore- putation which is independent of the unit under
front of electronics research. Unfortunately, the test and thus need only be done once at the factory
tremendous strides which have been made in digital or a maintefance depot. Indeed, the distinction
test technology have not been paralleled by equal between on-line and off-line computation is further
propses in the analog area. As such, even though exaggerated by the higO cost of cnmputing and the
-So% of the boards are digital 80% of the problems dearth of trained personnel in a field maintenance
are analog" environment vis-a-vis that is available at a

maintenance depot. Thus in a CAT alorithm a gdt
The lack of progress in analog CAT vis-a-vis ptio ity mua be p&ced on tucing the on-WUn
digital CAT may be attributed to four factorst compution l A.qu4A nt& even at the cost of

i. t tsignificantly increasing the off-line computation.
J). the cost of aalog circuit simulations As such, an algorithm which is viable in a design

LL). the continuous nature of analog failure environment ight not be acceptable in a mainten-
ance environment and vice-versa. Indeed, in a CAT
algorithm one would be happy to accept the cost of

iii). tolerances on the agood" components in an generating a complex data base in an off-line en-
analog circuit. vironment to achieve a reduction in on-line comps-

iv). and the lack of viable models for the tational requirements.
components in a faulty circuit. B. Test Points: Sistorically, analog circuits have

been tested with the aid of a *bed of nails" testerMoreover, these difficulties have bean exagerated wLhalw n omk s fts ct1

bthe economics of the maintenance environment which allows one to make use of test data which is
the limit~s he dege t hichany evo t not accessible via the input and output terminals

lassicalts o aeale t ich m n o n b of the circuit board. Unfortunately, modern cir-
cssica CTo opaag cuit boards are often multilayered and/or coated,
used in a CA? package. thereby limiting the applicability of the "bed of

The purpose of the present paper is to describe a nails" concept. As such, a modern CAT algorithm
must be designed to work with the test data which

set f citera wich e bliev a ractcalis available at the externally accessible terminalsanalog CAT algorithm should achieve and to indi- i vial tteetral ~es~e mnl
of a printed circuit board. In practice, this

cats the degree to which they are net by the var-
ious algorithms which have thus far been proposed. 1  proves to be a dominating factor in the design of

Them* criteria icude computational ro os,. a CAT package, which precludes the use of same of
Tes e include rnequreents the more attractive algorithms with test point re-

- -nbers of test points and test vectors employed, quirements which grow linearly with circuit cam-
robustness to tolerance effects, availability of
models, and the degree to which the algorithm s tonal to the area of a printed circuit board (if

amable to prallel processing. Although many not a power thereof) while the number of accessible
specifi algorims have been proposed they nay test points is proportional to the edge length of
natually be classified into three categories: the board. As such, in a practical CAT package it

0). simulation-before-test, is reasonable to require that the nw.ba o tU*
.nston-bot-epot ow it th qu oot ooC t 0 iua toot-

ii). simulation-after-test with a single test p tex~t (or less).
vector,

ii) . and simulation-after-test with multiple C. Robustnesst Unlike a digital system wherein a

test vectors. device is either good or bad in an analog circuit a
device is either "in-tolearance" or "out-of-toler-
ance" and, as such, an analog CAT algorithm must beElch of these throe approaches to the analog CAT able to cop* with the effects of dOmpOnetd Ah

Problem is compared against our criteria, and, abe to co e it t effect of t thC At-COLSMAJC b JC n0C nami aL . Although, at the
Lnterestinqly, each approach fails to meet at tine of this writing, there is insufficient ex~ri-
least one of the proposed criteria. mental data to determine the import of robustness

in an analog algorithm it is, at minimm, a factor
of which one must be cognizent and may, in fact,

A. Comutational Recluirementso Unlike a CAD al- prove to be a dominating factor in the design of a

This research supported in part by the joint Services Electronic Program at Texas Tech University under OUR
Contract 76-C-1136. 165
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viable CAT package. thaM a linear rate with circuit complexity. Con.
cerninq the remaining criteria we want an algor.tha

0. Models s Since most CAT algorithms presuppose that is robust though the significance of this re,
some form of circuit simulation in their operation quirement is not fully understood at this time.
and design of such an algorithm must consider the Similarly, the availability of circuit models to
type and availability of circuit models which are implement an algorithm must be considered. Finally,
required and/or available. In particular, does but secondary to the above requirements, it would
the algorithm use nominal circuit models or be desirable to have a module oriented algorithm
6duted c mode? indeed, even if nominal which is amenable to in-situe testing and parallel
circuit models are used do they operate in their processing. These criteria are summarized in table
normal range? Finally, one must consider whether 1, along with a set of goals which one would wish
or not the r lgorithm is capable of dealing with to achieve in an "ideal analog fault diagnosis al-
"fuzzy" components which do not admit viable simu- gorithm".
lation models.

CAT ALiGRTHIHS
Z. Module vs. Parameter Testing: Most analog
fault diagnosis algorithms can be catagorized as A. Simulation-Before-Test: Although it is essen-
either module oriented or parameter oriented. Zn tially a brute force search algorithm, simulation-
the former case the algorithm tests the input- before-test is well suited to the depot/field com-
output performance of the individual modules or putational environment of the CAT problem and, as
subsystems which make up the UUT while in the such, it predominates in most state-of-the-art
latter case the algorithm estimates a set of para- digital CAT packages. 3 On the other hand its weak-
meter values which determine the performance of a nesses become more pronounced in the analog probla
given circuit nompnent. Although one can often wherein it has yet to be successfully implemented.
formulate a circuit model for a given module there- Basically, a simulation-before-test algorithm is a
by permitting one to use a parameter oriented al- search algorithm in which one simulates the expect-
gorithm to test modules, such a process may ed test data which would result from various
unnecessarily complicate the test procedure. As hypothesized failures in an off-line environment.
such, a iodu.l 04*Rtf CAT a.goithm i4 p*t. em14d Then when the actual test data is obtained in the
over a parameter oriented algorithm if it can be field it is compared with the simulated results to
fozulated without compromising other factors, determine the failure. Needless to say the tech-

nique requires immense amounts of off-Line computen
P. Xn-Situe Testing Although secondary to the time to generate the required data base but is ex-
above considerations the ideal CAT algorithm tremely efficient on-lie, wherein one need only
should allow for iA-4i Le teUtiA.. Since one compare the test results with the simulated data
cannot control the input signals applied to the base.
OUT in-situe such an algorithm must work with an
arbitrary input signal rather than a fixed set of Unfortunately, the cost of an analog simulation is
test vectors, much greater that that of a digital simulation.

Moreover, one requires a much larger data base La
G. Parallel Processing: Since the CAT problem is the analog problem than In the digital problem to
inherently a large scale systems problem it is cope with the continuous nature of the analog fail-
essential to exploit whatever computational power ure phenomena and the robustness problem. :As such.
is available to reduce both on-line and off-line there is considerable doubt about the applic3bLUt
computational requirements. In particular, digital of the si=ulation-before-test concept in an analog
CAT algorithms often use some degree of parallel CAT package.
processing in their implementation. Given the
additional computational problems associated with Vis-a-vis our criteria for analog fault diagnosis
an analog CAT algorithm the degqu.eto whZt dn a - simulation-before-test requires extramely large
gOAditm can be impeunted in pa et be.omr A d amounts of off-line computer time but only a

aiiie.Wn jadto A in determining its viability minimum of on-line computer time. Additionally,
and should therefore be included among our criteria the test point requirements for the algorithm are
for an analog CAT package. minimal. On the other hand the technique has no

inherent robustness and uses faulted simulation
Zn the above paragraphs we have described seven models for all components. With regard to the
aspects of the CAT problem which must be consider- secondary factors the algorithm is module oriented
ed in judging an analog CAT algorithm. .Although and amenable to parallel processing but not in-
we would ideally like to formulate an algorithm situe testing. These considerations are summarize
with minimal computational requirements a mode,,ta in Table 1.
dmount O odd-t. comptita*Aan is acceptable since
the off-line computation need only be done once 3. Simulation-After-Test with a Single Test Vectm
and is carried out in a depot environment where Rather than using a search algorithm for fault
good computational facilities and high level per- diagnosis one can attempt to model the analog faul
sonnel are available. On the other hand since the diagnosis problem as a nonlinear equation in which
ol-Une computAtion associated with a CAT algorithm one solves for the internal variables or component
is replicated for each OUT and carried out in a parameters in terms of the test data. Although
field environment it must be kept to a minimum. this may, at first, seem to totally bypass the
Likewise the test point requirements for an analog repetitive simulation-befors-test algorithm, a
CAT algorithm must be kept to a minimum. Although careful analysis will reveal that each iteration 0
the requirement that the number of test points the required numerical equation solver amounts to
used by a CAT algorithm grow with the square root simulation of the UUT. In this case, however, the
of circuit complexity is open to debate it is in- particular simulations which one carries out are
dicative of a fundamental limitation to the effect based on known test data rather than a-priori
that the number of test points should grow at less fault hypotheses. As such, the simulations are
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'doe on-line after the test data has been obtained and the degree to which the various algorithms

ad the technique is thus termed simulation-after- achieve these goals is indicated. From the table
test.% it is apparent that none of the algorithms is fully

acceptable. Indeed, even if one neglects the
In the case where only a single Last vector is secondary considerations regarding modules vs.
oployed the resultant fault diagnosis equations parameters, in-situ. testing, and parallel process-

are "almost linear" and may be solved with the aid ing all three approaches fail to meet one or more

of & single (off-line) sparse matrix inversion. ,'5  of the primary criteria (indicated by capital
The test point requirements for the algorithm, letters in the table). As such, the proper
bojever, grow linearly with circuit complexity. approach to the solution of the analog CAT problem
InterestinglY, this class of algorithms has been remains an open question.

discovered independently by a number of authors
over the years, most of whom though that they had RZFERENCES
found th* *ideal algorithm" until they fully
appreciated the significance of the test point re- 1. DuhaMl, P., and J.C. Rault. *Automatict Test
quirement which severely limits its applicability. Generation for Analog Circuits &d Systemss A
From the point of view of our other criteria, Review", IEEE Trans. on Circuits and System. Vol.
bovver, the algorithm is, indeed, "ideal". Off- CAS-26, pp. 411-440, (1979).
line computational requirements are moderate while
on-line computational requirements are minimal. 2. Plice, W.A., "Automatic Generation of Fault
Moreover, the algorithm is inherently robust and Isolation Tests for Analog Circuit Boa-rds, A
requires no simulation models of any kind, it Survey", Presented at ATEX East '78, Boston. pp.

tests modules, and it is amenable to in-situe 26-28, Sept. 1978.
testing. Finally, the computational requirements
associated with the algorithm are sufficiently low 3. Seeks, R., and S.R. Liberty, Rational Fault
so is to render the parallel processing question Analysis, New York, Marcel Dekker, 1977.
moot.

4. Saeks, R., Singh, S.P., and R.-w. Liu, "Fault
C. Simulation-After-Test with Multite Test Isolation via Coponents Simulation", I Trans.
vectors: One approach to reducing the test point on Circuit Theory, Vol. CT-19, pp. 634-640, (1972).
requirements of the simulation-after-test algorithm
is to use multiple test vectors to increase the 5. Trick, T.N. Mayeda, W., and A. Sakla, "Calcu-
number of equations obtained from a given set of lation of Parameter Values from Node Voltage
test points, thereby rendering the fault diagnosis Measurements*, IEEE Trans. on Circuits and Systems,
equation :soluable with a restricted number of test Vol. CAS-26, pp. 466-474, (1979).
points. The most common form of the multiple test
vector algorithm is the multifrequency algorithm
used in linear fault diagnosis, though the concept
extends to the nonlinear case via the use of
multiple test vectors of any type.

1,1

The reduced tesxt point requirement obtained via
the use of multiple test vectors is, however,
achieved at the cost of greatly increasing the
complexity of the resultant fault diagnosis equa-
tions. Indeed, the "almost linear" equations of
the single test vector algorithm are replaced by
an extremely complex set of nonlinear equations
(even for linear systems) in the multiple test
vector algorithm. Although these equations can be
made trackable in the linear case they appear to
be totally untrackable in the nonlinear case and,
as such, most of the advantages of the simulation-
after-test concept are lost when multiple test
vectors are employed.

With regard to our criteria the multiple test
vector algorithms require large amounts of on-line
computer time though relatively little otf-line
computer time is required. in its most obvious
for the technique is robust, though this robust-
fness is compromised by most of the "tricks" which
have been proposed to make the multiple test vector
fault diagnosis equations trackable. Faulted
simulation models are required and the algorithm
is inherently parameter oriented. Finally, it is
not suited to either in-situe testing or parallel
implementation.

CONCLUSIONS

The above concepts are summarized in Table 1,
"herein the various criteria, by which an analog
CAT algocjtm should be measured are tabulated,
the ioals for an ideal algorithm are described,
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ANALOG FAULT OIAG1OSIS WITH FAILURE BOUNDS-

C.-c. Wu, K. Nakajima, C.-L. Wey, and R. Seeks
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Abstract

A simulation-after-test algorithm for the analog fault diagnosis problem is pro-
posed in which a bound on the maximum number of simultaneous failures is used to
minimize the number of test points required. The resultant algorithm is appli-
cable to both linear and nonlinear systems and can be used to isolate a fault up
to an arbitrarily specified "replaceable module".

I. INTRODUCTION this approach is ideally suited to the analog fault

Conceptually, analog fault diagnosis algorithms diagnosis problem and, as such, a considerable re-

can be subdivided into three classes; 3 simulation- search effort has been directed towards the problem

before-test, simulation-after-test with a single of reducing its te.t point requirements.3 One such

test vector, and simulation-after-test with multi- approach uses multiple test vectors to increase the

ple test vectors. The former is commonly employed number of equations obtained from a given set of
in digital testing and is characterized by minimal test points. Unfortunately, this is achieved at

on-line computational requirements. Unfortunately, the cost of greatly complicating the set of simul

the high cost of analog circuit simulation coupled tanems equations which must be solved and, as such,

with the large number of potential fault modes the applicability of the approach is limited.

which must be simulated in an analog circuit limits The purpose of the present paper is to describe an
the applicability of simulation-before-test al- Teraie smtionaerst a egori e in

alternative simul ati on-after-test algorithm in

gorittvns in an analog test environment. As an which a bound on the maximum number of simultaneous

alternative to simulation-before-test, a number of failures is used to reduce the test point require-
researchers have proposed simulation-after test al- ments while still retaining the computational sim-

gorithms, in which the internal system variables or plicity inherent in a single test vector algorithm.

component parameters are computed from the test Indeed, even though a circuit may contain several

data via a "nonlinear equation solver - like" al- hundred components it is reasonable to assLme that

gorithm. Indeed, In the case where sufficiently at most two or three have failed simultaneously.

many test points are available only a single test As such, rather than solving a set of simultaneous

vector is required and the fault diagnosis problem equations in n-space the solution to our fault

reduces to the solution of a linear equation.8'9  diagnosis problem actually lies in a two or three

Except for the large number of test points required dimensional submanifold which should yield a

This research supported in part by the Joint Services Electronic Program of Texas Tech University
under ONR Contract 76-C-1136.
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commensurate reduction in test point requirements. tested at one step is dependent on the number of

Unfortunately, even though we may assume that at test points available while the number of steps

most two or three components have failed we do not required is determined by the number of components

know which two or three, and as such, some type of which may be tested at any one step and the bound

search is still required. Fortunately, with the on the maximum number of simultaneous failures.

aid of an appropriate decision algorithm the re- As such, the procedure yields a natural set of

quired search can be implemented quite simply. tradeoffs between the numbers of test points, sim-

Consider the circuit or system which is illustrat- ultaneous failures and steps required by the al-

ed in figure 1. gorltm. Indeed, since the computatlonal cost

associated with each step of the algorithm is

0 I essentially the cost of a single system simulation

I )the latter parameter is a natural measure of the

computational cost.

In the following section we describe the simula-

G! tion model used to test one set of components

im under the assumption that the remaining components

.I are good. In section three two decision algorithms

01' for analyzing the resultant test data are describ-

Figure 1. Test algorithm for abstract circuit or ed. Indeed the required theory is reminiscent,
system. though not identical to, the t-diagnoslbility

Here, the individual circuit components or sub- theory developed for digital testing over the past
systmsare denoted by circles indexed from a to n. decade.4'6  Finally, section four is devoted to a

These components are subdivided into two groups, number of examples including linear circuits with

at each step of the test algorithm, as indicated 12 and 22 components which were run on a desktop

by the dashed lines in figure 1. At each step we calculator and a 16 bit mini, respectively.

assume that one group; say, d through n; is com-
posed of good components and we use the known

characteristics of these components together with Although our test algorithm can be formulated in

the test data to determine whether or not the re- terms of any of the standard system models for the

malning components; a,b and c in this case; are purpose of this exposition we will assume a com-

good. Of course, if components d through n are ponent connection modet for the circuit or system

actually good then the resultant test results for test.2  In the nonlinear case the unit udeA te at

components a, b and c will be reliable. On the Is represented by a set of decoupled state models

other hand, If any one of the components d through characterizing its components and/or subsystems

n is faulty the test data on a, b and c will be together with an algebraic connection equation as

unreliable. As such, we repeat the process at the follows.

next step of the test algorithm with a different f f(xia1)

subdivision of comoonents. For instance, we may ; x1 (O) - 0,-1,2 ... .n (2.1)

assume that a through d and h through n are good bi . g1(x1,ai)

and use their characteristics to test components
e, f and g. Finally, after a number of such and

repetitions the test results obtained at various a a L11b + L21u (2.2)

steps are analyzed to determine the faulty com-

ponents. Y L21b + L2 2u (23)

Of course, the number of components which may be Here, a • col(ai) is the column vector composed of
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the omponen iput voazbteA, b * col(b1) is the a2  21I + 22b2 2
L1b+L11b * 1 u (2.7)

column vector composed of component output vaA.4- 
11  + 12

eAb, u is the vector of extwkat te.t inputA y L 1, b+ L22, L (2.8)
applied to the system and y is the vector of 4ya-

te, aupon6a m.otiued at the va4iouA teAt po".na. Given equations 2.4 through 2.8 our goal is to cam-

Although the component connection model is not pute the goup *2" component'variables, a2 and b2 ,

universal it is quite general and subsumes most given the tt i4nput, u, the me aaed teAt

of the classical topological connection models &A#popAu, y, and an aA&uzption t o th e .tie that

commonly used in circuit and system theory. 2 te goup "I" componntA wt not 6autt. To this

ioreover, its inherently decoupled nature is end we assume that L2, admit's a left inverse,

ideally suited to the test problem wherein we de- [L2 1] ., which, in turn, determines the allowable

sire to distinguish between the characteristics component subdivisions. Under this assumption one

of the individual system components. Although may then formulate a component connection model

these components may be taken to be elementary for a "p6eudo aca.tm composed of the group "Im

RLC components and/or discrete semiconductor de- components with external input vector u
p .

vices, in practice the "components" are taken to col(u , y) and external output vector yp .
2 2

be the "replaceable modulesm within the circuit col(a , b ) in the form

or system, under test; say, an IC or.a "throw- ;l 1(x a

away" circuit board. ; x() 0 (.)

At each step of the test algorithm we subdivide I I 1
the "components into two groups denoted by "1" and • g (x ,a )
"2" with the compobnents in group "1" assumed to be a1 Kb1 I + K LuP (2.10)

good and used together with the known values of u

and y to compute the component input and output yP = K21bl + K22uP (2.11)

variables, ai and b1 , for the components in group

"2". Although computationally we prefer to work Since, in our test problem u and y are known, the

with the decoupled component equations for nota- above equations can be solved via any standard

tional brevity we combine the equations for the analysis code to compute yP - (a2 ,b2 ). Now, under

components in each group into a single equation our assumption that the group "1" components are

not faulty yP . (az,b2) represents the inputs and
x f1(xla 1) outputs which actually appeared at the terminals

x1 (O) * 0 (2.4) of the group "2" components during the test. As

g 1 g 1)  such, we may determine which of the group "2"

and components are faulty by solving equation 2.5 with
2  (x2 ,a2) input a2 and checking to determine whether or not

; x2(0) 0 (2.5) the resultant output coincides with b
2 . Of course,

since our assumption to the effect that the groupbZ 9 g(x a "1" components are not faulty may not be valid the

Here, xl ,a1 and b1 are the vectors of group "1" %euttA oj th4s te t me not t iabte. As such,

component state variables, inputs and outputs; we repeat the process a number of times with

and similarly for x ,a2 and b2. To retain nota- different choices for the subdivision of the com-

tional compatibility with 2.4 and 2.5 we reorder ponents into group "1" and group "2". Here, the

and partition the connection equations of 2.2 and only constraint on the choice of subdivisions is

2.3 to be conformable with 2.4 and 2.5 as follows the requirement that CL 2 I)-
L exist while the num-

a 1  1° + L 12 b Lu (2.6) ber of combinations employed is limited only by
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the cost of the required simulations. The results given step of the test algorithm indicate that ex-

of the several steps in the test algorithm are actly one group "2" component Is faulty; say, x.

then analyzed via the techniques described in the w1n

following section to determine those components """ a b c .... k

which are actually faulty. 1 Ix

I1. DECISION ALGORITIS 0 y

Since the results of the test described in the

preceding section are dependent on our assumption 0 z

that the group "1" components are not faulty.they

are not immediately applicable. Following the In this case the same argument we used above will

philosophy initiated by Preparata, Metze, and guarantee that the components which test good; say,

Chein 6 in their study of self testing computer y through z; are, in fact, good. On the othcr hard

networks, however, if one assumes a bound on the we have no information about x. It may be faulty,

maximum number of faulty components it is possible or alternatively, the test result may be due to a

to determine the actual fault(s).from an analysis faulty group "1" component.

of the test results obtained at various steps in Finally,. consider the case where two or more group

the algorithm. To this end we will give a con- "2" components test bad in a given step as indicat-

plete analysis of the theory required to locate a ed in the following table.

single fault together with an heuristic which is mid

applicable to the multiple fault case. 2,N a c ... k

Let us assume that at most one circuit component 1 x

is.faulty and that the test results obtained from 1 y

a given step of the algorithm indicate thit all

group "2" components are good as indicated in the a z
following table, where the binary anotatitoA M

the left of the group "2" components indi6t- Since, under our-assumotion of a single failure..it

those which were-found to be good(O) ano oad (1) is impossible for two or more group "2.' components

at this step of the test algorithm to be faulty, this test result implies that at
Kim least one of the group "1" components is bad. On

" a b c ... k the other hand slnce we have assumed that there is

o -x at most one faulty component the faulty group "l'
0 y component is the only faulty comoonent and. as

* . such, the group "2" components are all good.

0 z Consistent with the above, at each step of the test

algorithm, either all or all but one group "I"

In this case we claim that the group "2" components components are found to be good. As such. if we

are, in fact, good. Indeed, if a group two com- choose our subdivisions so that the components

ponent were actually faulty then our test results which are found to be good at one step of the al-

are incorrect, which could only happen if one gorithm are included in group "1* in all succeed-

of the group "1" components was faulty. As such, ing steps we eventually will arrove at a group "1",

the system would have two faulty components con- all of whose components are known to be good. As

tradicting our assumption to the effect that at such, the test results obtained at that step will

most one component is faulty. be reliable thereby allowing us to accurately deo-

Now, consider the case where the results from a termine the faulty components in group
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Unlike the single fault case, at the time of this a b C k

writing, we do not yet have an exact decision al-

gorithm for the multiple fault case. Following 0 x 1 0 1 1

Liu, however, the problem can be greatly simpli- 1 y 1 1 0 0

fied if. one adopts an "analog heuristic4 to the

effect that two independent analog failures will 0 0 1 1 0

never cancel.0

Recall from our discussion of the single fault are effected by component J while a "0 in the i-j

case that whenever a test result indicates that a position indicates that component j does not effect

component is good then it is, In fact, good. Al- the test results for component 1. Now, since com-

though this is not rigorously true in the multiple ponent z has been found to be good in this test our

failure case it is true under the assumption of heuristic implies that b and c are also good. Simi-

our heuristic. For instance, consider the test larly, since component x is good so are a,c, and k.

results indicated in'the following table in which Thus, with a single test we have verified that xz,

x is found to be good. ab,c.and k are all good.

"2"X a b c ... k ZV. EXAMPLES

0 X To obtain examples the above techniques were

1 y applied to the 12 and 22 component linear amplifier
circuits shown in figure 2 using simulated test
data for various manbers of simultaneous failures,

0 z choices of test point locations, and bbth decision

Now, if x is actually faulty there must be a faul- "aTgorthi. All analysis for the 12 comonent
circuit was done on an HP 9825 desktop calculator

ty group "10 component whose effect is to cancel while the 22 component examples were run on a T--

the error tn x as observed during this. step of the 9)90/20 minicomputer. The results of" some 750 simu-

test algorithm. This is, however, forbidden by
lations of the algorithms are tabulated in table 1.ou r heur ist itc and , as such , we conc lude th a t )f iswh r t e nu b r o t st p i s , i ul a o sactuall good.whtre the number of test points, siu'ultaneousI

actually good. faults, and the decision algorithm employed are in-

Interestingly, our heuristic can be carried a step, dicated. The results of the various simulations

further than indicated above since, under our are indicated by the ambiguity of the resultant
heuristic, a bad group "1" component would normal- diagnosis. For instance, in our simlation of the

ly yield erroneous test results. An exception 12 component circuit with 3 test points, one fail-

would, however, occur if some of the group."1" ure and the exact algorithm 12 runs were made (one

components are totally decoupled from some of the with each component fauly). On 10 occasions the

group "2" components' As such, itf prior to our fault was located exactly while the fault was lo-

test we generate a coupling table (by simulation cated up to an ambiguity set composed of two compon-

or a sensitivity analysis) which indicates whether ents on 2 occasions. Finally, we note that the Sth

or not a faulty group "1" component will effect run of the 12 component circuit indicated by an as-
test results on a group "2" component, our heuris- terick in the table represents a simulation in

tic may be used to verify that certain group "1" which the good components were set at '+/-21 off of

components are good whenever a good group "2" com- nominal to test the robustness of the algorithm.

ponent is located. Consider, for example, the

following table in which a "1" in the i-j position Vt. REFERENCES

indicates that the test results for component t 1. Amin, T., unpublished notes, Bell-Laboratories,
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1980. ible System. IEEE Trans. on Electronic Com-

2. DeCarlo, R.A., and R.Saeks, interconnected D- puters, Vol. EC-16, pp. 448-404, (1967).

namical Systems, New York, MarcelT0ekker,(to 7. Seeks, R., "Criteria for Analog Fault Diagnosis.
appear). Proc. of the 1981 European Conf. on Circuit

3. Ouhamal, P., and J.C. Rault, NAut.omat Test Theory and Design, The Hague, Aug. 1981, (to

Generation Techniques for Analog Circuits and appear).-

Systems: A Review', IEEE Trans. on Circuits and 8. Seeks, R., Singh, S.P., and.R.-w. Liu Fault
Systems. Vol. CAS-26, pp. 411-440, (979). Isolation via Components Simulation', IEEE

4. Hakimi, S.L. "Fault Analysis in Digital System Trans. on Circuit Theory, Vol. CT-19, pp. 634-

.A Graph Theoretic Approach'. in Rational 640, (1972).

Fault Analysis, New York, Marcel Oekker[, 1977, 9. Trick, T.N., Mayeda. i., and A. Sakla, *Calcu-
p -1Z. lation of Parameter Yalues from Node Voltage

S. Liu, R.-w., unpublished notes, Univ. of Notre Measurements", IEEE.Trans. on Circuits and Sys-

D . 1980. tems. Vol. CAS-26, pp. 466-474, (1979).

6. Preparata, F.P., Metze, G., and R.T. Chain, "On
the Connection Assignment Problem of Diagnos-

Figure 2. a) 12 component amplifier and b) 22 component amplifier. All stages of the amplifier
circuits have nominal op-amp gains of 1.6. nominal resistance of 1OK ohms, and nominal
capacitance values of .O0lif while the feedback capicators have nominal values of lOOpf.

Circuit/Computer #Test Points IFaults Dec. Alg Ambiguity set

12 component 4 1 Exact 12

circuit simulated 4 2 Heuristic 12
on an HP 9825
desktop calculat 3 1 Exact 10 2

3 1 Heuristic 12

3 1 Exact 101 2*

22 component 8 1 Exact 22

circuit simulated 6 1 Exact 18 4
on a TI 990/20 S I Exact 16 6
minicomputer .

5 1 Heuristic 22

Table 1. Simulated test data. * indicates a simulated test in which
the good components were taken to be /* 2 off of nominal.
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A DIFFERENTIAL-1NTERPOLATIVE APPROACH TO

ANALOrv FAULT SIMIULATION

C.-c. Wu**, A. Sanqiovanni-Vencentelli*, and R. Saeks°*

I. INTRODUCTION

After a half century of neqlect by the cir- describe a research effort directed at alleviatinq
cults and systems community the past decade has some of the difficulties in developing a sfmulatbn-
witnessed the emergence of a research effort in the before-test algorithm for analoq fault diagnosis.
analoq circuit maintenance area. The various al- The underlying philosophy and motivation for our
qorithms which have been thus far proposed for the formulation is discussed in section 2, alonq with a
analoq fault diaqnosls problem may naturally be derivation of the required differential-interpola-
suodivided into two classes termed "simulation- tive fault diaqnosis formula. Finally, section 3
before-test" and "simulation-after-test". The is devoted to a number of illustrative examples of
former are commonly used In diqital system test a]- the approach. These include both linear and non-
Qorlthms and require an automatic test proqram linear examples formulated in the frequency and
qenerator (ATPG) which simulates the responses of time domains, respectively.
"all possible" failures. This is typically done at
a maintenance depot with the simulated responses I. A OIFFERENTIAL-INTERPOLATIVE ALGORITI
beinq recorded and shipped to the field where the
response of the unit under test (UUT) is compared Althouqh any practical fault diaqnosis algo-
with the simulated responses to determine the ritthm must be able to handle systems with a hundred
failure. The major advantaoe of simulation-before- or more components, from an intuitive point of view
test is that It is ideally matched to the depot/ our alqoritthm is best illustrated in the two com-
field maintenance environment with the larqest part ponent cases where the parameter space can be dis-
of the computation done only once. As such, the played qraphically. Say, we are dealing with an RC
technique is ideally suited for diaital testing circuit for which the parameter space is illustrat-
where the binary nature of the problem keeps the ed in figure 1.
number of failures to be simulated within bounds
and eliminates tolerance problems. Unfortunately,. R
In the analoq problem we must cope with a continuum
of possible failures and simultaneously deal with
qood components which are in tolerance but not nom-
inal. As such, a tremendous number of simulations
are required by a simulation-before-test algorithm,
while some type of decision alqorithm is required
to cope with the tolerance effects.

Unlike simulation-before-test, simulation-after- . . C
test uses ah "equation so)ver-like" alooritthm to
compute the parameters of the UUT components in the
field. Since most such algorithms require iterative
evaluation of the equation to be solved, the UUT is
effectively simulated at each iteration, though the
simulation is based on actual test data rather than
hypothesized failure data. The simulation process
is, thus, carried out after testinq the UUT and
hence the choice of terminoloqy. The advantage to
such an approach is that the faulty component para-
meters are computed explicitly, thereby, eliminat- Figure 1: Parameter space for RC circuit.
ing the ambiquity caused by the use of discrete
simulation-before-test data and tolerance effects.
Althouqh relatively few simulations are required Here, R and C represent normalfzed parameter values,
for each taT; they must be carried out in the field wherein, the-nominal parameter values are transfam-
rather than the depot and they must be repeated for d to the origin. In the most neneral simulation-
each UUT. before-test algorithms one assumes that the faulty

parameter values may lie anywhere In the R-¢ plane
The purpose of the present paper Is to and therefore carries out simulations along-a two

* D)ept. ofr Elec. Enqrq. and Comp. Science, Univ. of California at Berkeley, Berkeley, CA. 9(1024.
Dept. of Elec. Enqr., Texas Tech Univ., Lubbock, TX ;94()9. This research supported in part by the
Joint Services Electronics Program at Texas Tech University under ONR Contract 76-C-1136.
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dimensional discrete array spread over the entire cannot be used to locate the faulty parameter values
plane, which may be far from nominal; indeed, it is often

infinite or zero; though it can be used to cope
Fortunately, in a 'real world! testing environ- with the tolerance effects.

ent one can assume that only a "limited number of
components" fail simultaneously. In our two cam- Our differential-interpolative approach thus
ponent example we may therefore assume that either uses a classical minimum distance alqorithm to lo-
R or C has failed with the other remaining nominal, cate the general reqion of the faulty parameter
in which case the circuit need only be simulated values indicated by the circle in figure 2a (which
at a discrete set of points along the coordinate is maqnified in fiqure 2b). Now, it is assumed
axes in the R-C plane denoted by x's in figure 1. that the simulated values of the system responses;
As such, the~nrnber of simulations required is siq- fl f 2 . and f3; corresponding to the points; c,€c,.
nificantly decreased. Indeed, this is one of the and are available along with the associated In-
major advantages of the simulation-before-test a 3; -) v l o1
concept as compared to simulation-after-test alqo- verse sensitivity matrices; Jl, Jland J1. we
rithms which typically fail to exploit a *limited then interpolate these data points to approximate
number of failures" assumption. the system responses and the associated inverse

While the above described approach has been sensitivity matrice along the axis by functions

used with considerable success in diqital system f(c) and J(c) "1 . Althouqh any interpolation can be
testinq, wherein, the axes are binary and no toler- employed we have had our best results using a bi-
ance problems are encountered, it is not well suit- linear interpolation for f (which gives exact
ed to the analog test problem. First, an analog results in the linear case) and a second order
failure may occur anywhere along the axis and hence I
same type of approximation scheme is required to polynomic Interpolation of J 1 . Now, If x denotes

interpolate between the discrete simulations, the faulty parameter vector and m denotes the
Secondly, a "good" component is assumed to be in- measured system responses then a 1st order Taylor

tolerance, though it may not be nominal. As such, series approximation combined with our interpola-
In an analog environment the "limited number of tion will yield the (approximate)equality
failures* assumption implies that the solution to m - f(c) + J(c)Cx - c] 1.
our fault diagnosis problem lies near, but not for those values of c near x. Equivalently,
necessarily on, the coordinate axes as indicated by
the shaded reqions in figure 2a. tx - c€ • J(clm - f(c)] 2.

Interestingly, by invokino the Projection
V theorwi one can reduce the above vector equation tu

a scalar equation and simultaneously eliminate the
,. - requirement for storing the Inverse sensitivity

i,. /matrices. Indeed, the vector [x-cl will be perpen-

dicular to the axis at the point c which makes the
closest approach to the fault. As such, if e de-

' ' notes the unit vector in the direction of the axis
then,~~ t . 1te

V O" e x-c ] eCJ(c)m - f()] 3.

b) awhich can be solved for the faulty parameter value.
-- - -c. Note, our goal is to solve for L. not x, since

x1  we are interested in locatina the faulty parameter
value in the presence of the tolerance problem, but
we really do not care to compute the deviations

C from ominal in the qood parameters.

To summarize. if rather than simply storing
---- --- ---- --- the simulated circuit responses, f1, we also store

the vectors etJ -1 then the tolerance effects

Figure 2: a) Solution space under a single failure associated with the ood components can be com-
assumption. pletely removed from our fault diaqnosis alqoritm-

b) Illustration of the differential- at leest up to the approximation error induced by
interpolative diaenosis alqorithm. the interpolation process and Taylor series ex-

pansion. Since most qood circuit simulation cooes
While we might choose to simply fill the shaded inclij,!e a package for qeneratinq sensitivity ma-

region with additional simulations, the cost of trices at little additional cost over and above
such a process may prove to be excessive. Rather, that involved in simply simulating the circuit
we exploit the fact that the deviations of qood responses, the approach can be implemented with
component parameters from nominal are small and use only a minimal increase in simulation costs. As
a Ist order Taylor series approximation to approx- such, the major expense associated with the
fmate the deviation. We note that such an aoproach aporoach lies with the storaoe requirements (for
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the f and eJit -I vectors) which are approximately 6f-K"S 2C1 R1R2 + SR2 + SR1 ]
double that of a classical fault simulation algo- "k (r 's ) " f (3-6)
rttm. where D a S2CIC RIR 2 + SCR2C2 + R1C2 + R1(1-K)]+ i

Although the above derivation has been illus-
trated in the two dimensional case with a single Since we have five parameters in the transfer
faulty parameter it can be readily extended to a
general setting, say with several hundred coaponwis function, five distinct test frequencies are re-
and three or four simultaneous faults. If one quied to provide sufficient Information for
assUmes p simultaneous faults then p inner products diaqnosis.
are required to apply the Projection theorem yield- The fault diaqnosis edsults are listed ining p eqations and p unknowns to be solved for the Tefutdansst~ut r itdi
faulty paramter values. Otherwise the formulation table 3-I. Here, the nminal values of KR 1 9R2*C1,
for the general case Is identical to the sinqle C are 1.6, iK1, 1Ko, 0.16 F and O.l6uF
fault case described above. rispectively and the faulty parameter is underlined

in the table
I1, EXAIPLES Table 3-1

In this section, two examples are given, one 2 ' 3 1 4 1 6
of them for linear systems and one for the nonlinear - . .
case. All of these examples were simulated on an
HPgSZ5A programmable calculator, and yielded fairly 1 00 M low 1070 lo0 100
nod results. 2 on, loW .lj ,o,, on "0

Our first example is a second order low pass 0, I. o.161. 6o.1, gjk o.117. 0. lu.
filter. The filter contains five components, K,* oat I.
R1 , R2 , C1,. and C2 , while, the circuit diagram is n - - ..

shown in figure 3-1 amiI, " , .20€ 4
1O 49 19.4 !.~ 0 ,22 k D .ZN 1

C1  In the first simulation, K is the faulty cam-
ponent with a value of n6,while tleother four com-
ponents are 5% or so off their nominal values, the
simulation result shows that K failed, and locates
it at K-O.591. The same remarks apply to the other
five simulations.

K_ Althounh the technique generally yields satis-
R1 factory results occasional errors occur when the

good components are too far out of tolerance. For
V instance, the following parameter values K-1.62, R1

C2  a !1070, R2 -9lO, Cl-O.5 , and C2 -0.172u led to an

erroneous result. The simulation shows that C2 has

failed with the value of 0.179u. However, the
Fioure 3-1. faulty component, in this simulation, is actually

C . If we sketch a two dimensional representation
o the C1 , C? plane the difficulty becomes clear.The transfer function for this circuit is onnmnlvle n4 tu nta flctn h

given by Fiqure 3-2 shows that C2 is too far away from its

onnominal value, an thus instead of locatn the
f(rs) - (1 3-1) error atraas we expect the sirlulation resut locates$ C RI RR2 + S[R 2C 2 + R1IC 2 + R1IC1 -K)]+1 the failure at a. with the differential trm still

pointtno toward the actual failure denoted by x.
The partial derivatives of the transfer func- , C2

tion wfth respect to each parameter take the f orm
f (3-2) O. RI1 79 u x

6f -K(S2C CR2 + SC2  SC1O-K), CI
(rs)- 2 (3-3) , ' .

df ( -KS C l2Rl + SC + '2"
-"l ; .S (3 -4 )

IF2 DZ

f " K(S2C1 R2 R1  SRI(I-K)) ( "

2 Figure 3-2
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Our nonlinear example is composed of a In this paper, we have proposed a simulation-
diode loaded by a shunt RC circuit as illustrated before-test algorithm for analog fault diagnosis,
in Fiqure 3-3. The diode is modeled by the in which a differential-interpolative technique is
characteristic functiony /V used to eliminate the ambiquity caused by tolerance

I (e a t - 1) (3-7) effects. Our approach has been tested with satis-
factory results in both the linear and nonlinear
cases. In fact, for the linear case, the approach

- r I provides an exact interpolation for f(c) on the0-7- :axes, and thus reduces the amount of simulation-
I |before-test data required on each axis. Although

+ " this Is not true for nonlinear case, the diagnosis
c results are still very attractive. Of course,

T occasional errors may occur when the good compon-
ents are too far out of tolerance. This phenomena

Fiqure 3-3 is. however, expected and well understood. Indeed,
the difficulty occurs only when the Ist order

Now. instead of working with frequency domain Taylor series approximation is too qood. Because
transfer functions, we work in the time domain. A this phenomena will rarely occurn the real world,
state equation for this circuit is given by we believe that it may be neglected in a

I (i(e iV c)/V t VC . practical algorithm.Vc -E1( I) .K (3-8)

The goal is to inteqrate this differential
equation so as to build a V (r) vector and f(r)
vectors as in the previous xamples.

Numerical techniques can be used to compute
Vc(t) at any instant t. In this example, the

V (P) vector was elevated by applyinq the fourth
Runae-Kutta method. Note that since there are four
independent parameters, R, C, Io and VT; in
equation (3-8) Vv(io t) should be evaluated at four
.different time instants to build a Vc() vector.

The simulation results are summerized in table
3-2. The nominal values of Io- VT, R, C are 0.2,
0.1, 1K, and 0.2S respectively.

Table 3-2[I 2 3 4 $ 5

1, 0.11 0.1 . 6.11 0.09

o 3 0 teLM No I

Ty 
0,L 

I 
I 

", 
",

C 6.22 0.11 0.25 f U 6.23

* 6 a j C
.031 1.44f9 401 Li 0.093

IV. CONCLUSIONS

For the simulation-before-test-approach to
fault diagnosis, we qain from the fact that most
computation can be done by off-line computation,
thus greatly reducing the repetitive on-line com-
putation associated with many fault diagnosis alqo-
rithms. From a practical point of view., the eco-
nomics of such an approach are extremely attractive.
Unfortunately, the simulation-before-test approach
is subject to a certain deqree of ambiquity intro-
duced by qood components which are in-tolerance
but not nominal.
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Abstract

Historically, symbolic network analysis has been motivated by the prob-

lems of circuit design and, as such, the emphasis has been pilaced on

quickly and efficiently obtaining a symbolic transfer function from a

given set of circuit specifications. In an operational or maintenance

environment, however, one is typically given a prescribed nominal circuit

and desires determine the effect of various (possibly large) perturbations

thereon. This is the case in a power system where one is given a fixed

network and desires to determine the effect of proposed modifications thereto.

Alternatively, in the problem of analog circuit fault diagnosis one desires

to simulate the effect of a number of alternative failures to compare the

simulated data with the observed failure data.

In such an operational or maintenance environment numerous perturbations

of the nominal circuit are studied and, as such, significant computational

efficiencies can be obtained if one first generates a data base 'n terms

of the nominal circuit parameters and then extracts the appropriate symbolic

transfer function from the data base each time a different symbolic transfer

is required. Of course the benefit to be achieved via such an approach is

dependent on the size of the data base and the ease with which a symbolic

transfer function may be retrieved therefrom.

The obvious manner in which to generate such a data base is to simply

pre-compute the coefficients of all required symbolic transfer functions
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and store them in the data base. Retreival from such a data base is, of

course, immediate but the data base may become overly large. Indeed, the

number of transfer functions which must be stored is O(jP) where k is the

total number of potentially variable circuit parameters and P is the maximum

number of circuit parameters which may vary simultaneously. An alternative

approach is to store the nominal transfer function information and then use

Householder's formula to compute the required symbolic transfer functions.

In such a data base we need only store 0(n 2 ) transfer functions where n is

the total number of component output terminals but retreival requires

0(n.+p 3 ) multiplications where p is the actual number of circuit parameters

which vary simultaneously. Since, in practice, n >> p the retreival process

requires approximately O(n 3) multiplications and is dominated by the large

dimensional matrix multiplication required by Householder's formula rather

than the low dimensional inverse.

In the present paper we will formulate an alternative data base for

the symbolic transfer functions which also requires 0(n2 ) entries, but for

which retreival requires only O(p 3 ) multiplications. Since p is typically

small this is tantamount to immediate retreival.
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Abstract

A theory for the diagnosability of nonlinear dynamical systems is develop-

ed. It is based on an input-output model of the system in a Hilbert space

setting. A necessary and sufficient condition for the local diagnosability

of the system, which is a rank test on a matrix, is derived. A simple

sufficient condition is also derived. It is shown that, for locally diag-

nosable systems, there exist a finite number of test inputs that are suffic-

ient to diagnose the system. Illustrative examples are presented.

189i



ABSTRACT OF

ANALOG FAULT DIAGNOSIS IITH FAILURE BOUNIDS

CS-CS H1u, K. .AKAJIMA,

C.-L, i!EY AND R. SAEKS

~L.Q1n1



Abstract

A simulation-after-test algorithm for the analog fauljt diagnosis

problem is proposed in which a bound on the maximum number of simul-

taneous failures is used to minimize the number of test points required.

The resultant algorithm is applicable to both linear and nonlinear

systems with multiple hard or soft faults and can be used to isolate

failure up to an arbitrarily specified "replaceable chip or subsystem".

193 kL" n' fJ

10



MULTIDIMENSIONAL SYSTEM THEORY

J. MURRAY

/IF-



Texas Tech University Institute for Electronic Science

Joint Services Electronics Program Research Unit: 4

1. Title of Investigation: Multidimensional System Theory

2. Senior Investigator: J. Murray Telephone: (806)'742-3506

3. JSEP Funds: Current $25,875

4. Other Funds: Current

5. Total Number of Professionals: PI's 1 (1 mo.) RA's 1 (1/2 time

6. Summary:

Although most research in the image processing area is motivated by the

computational problems associated with the actual image processing algorithms,

progress in the area has also been limited by the cost of designing an

efficient 2-D signal processing algorithms. Indeed, in many image processing

applications simple non-recursive algorithms are used in lieu of far superior

recursive algorithms because of the prohibitive design costs associated with

the recursive alqorithms. As such, this work unit is directed at the problem

of developing efficient design techniques for stable 2-0 digital siqnal pro-

cessors. In this endeavor we have developed, and reported upon, a 2-dimensional

design algorithm based on a spatially-invariant symmetric half-plane recursive

model and are in the process of developing an algorithm which uses a 2-D fre-

quency domain model for a periodically varying system originally introduced

by Jury and Mullin. The latter model completely eliminates the analytical

difficulties classically associated with 2-dimensional design but this is

achieved at the price of working with high dimensional matrices. As such,

the computational cost of the design process based thereon is prohibitive.

We, however, believe that the structure of the matrices which arise in this
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model can be exploited to formulate a class of efficient design algorithms

and are presently investigating this possibility.
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Abstract

A new approach to two-dimensional digital filtering is presented.
This approach is based on a one-dimensional periodically time-vary-
ing model which accurately reflects the scanning process inherent in
most recursive multidimensional signal processing. Time-varying
models are in general intractable; however, periodically time-vary-
ing discrete-time models such as occur in the present case are essen-
tially equivalent to multi-input, multi-output, one-dimensional time-
invariant systems. They therefore permit the application of classi-
cal techniques to design and analysis problems. Two further advan-
tages of the approach are the fact that it bypasses the problem of
boundary conditions, and that allowing time-varlation gives a degree
of design flexibility not available in the shift-invariant case. Some
possible design methods using these time-varying ideas are presented.

1. INTRODUCTION well understood and, although there are

The general field of two-dimensional data problems in some areas (such as uniform

processing has been the subject of exten- approximation) and difficulties with the

sive investigation during the past several data-rates and amount of computation re-

years. The simplest situation, and that quired (which are inevitable in two-dimen-

which has received most attention in sional work) the use of FIR filters is

theoretical work, is the shift-invariant almost routine by now in two-dimensional

case, where the processing operations are data processing. The design and use of

assumed to commute with translations in IIR filters, on the other hand, very often

bth directions. Much of the effort in presents serious difficulties. In what

this direction has been devoted to the follows, we will point out some theoretical

analysis and design of two-dimensional problems associated with shift-invariant

digital filters. In studying this work, IIR filtering, and show how the theory of

cne quickly becomes aware of a basic di- time-varying systems offers a (theoretical)

chotomy between finite impulse response resolution of these problems.

(FIR) filters, which are usually imple- 2. hIR FILTERING AND CAUSALITY

mented nonrecursively, and infinite im-

pulse response (IIR)'filters, which are 2.1. Two-Dimensional Czusallty

usually implemented recursively. The In one-dimensional data processing, the

and design of FIR filtering are dimension in question is usually time, and

Ths research suooorted in part by the Joint-rvices Electronic Program of Texas
Tech Unlv:rslty under 0NR Contract 75-C-1136.
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so there is a natural concept of causality, arises from the fact that the above order-
In -two dimensions, the situation is more Ing requires that the horizontal lines be
complicated. In many cases, the dimensions finite, while the use of shift-invariance
are both spatial, and so there is no in- requires in principle that they be infinite
trinsic causality. Even in the case where in at least one direction. A first approx-
one dimension is time and the other is imation to resolving this difficulty is
space (e.g., transducer arrays) one will given by the McClellan transform I] which
often have the data already recorded, and essentially concatenates the lines into
so causality will not be significant. How- one long line, and applies one-dimensional
ever, in this latter case, the appropriate linear shift-invariant theory to the re-
causaiity is a two-dimensional "symmetric sulttng signal; this however has the dis-
.....- plane" causality - but it should be advantage in principle of treating the
emcnasized that this causality is not in- edges of the image in -he same -day as
trtinsic :o the data; it is, rather, a pro- points in the interior. (In practice, of
perty of the processing used. At this course, one applies suitable boundary con-
point, a distinction must be made between ditions). It is clear that the model
FIR and ZIR filters. which most accurately reflects the actual

2.2. One-Dimensional Causality, processing being done in this Situation is

As was mentioned in the previous paragraph, a one-dimensional periodically time-vary-

there may or may not be a notion of causal- ing model.

ity inherent in two-dimensional data. How- 3. PERIODICALLY VARYING
ever the data must be processed .in time, DISCRETE-TIME SYSTEMS

and this introduces a concept of causality Time-varying systems in general are ex-
which (at least with classical processing) tremely difficult to work with; it is
is one-dimensional. How compatible this therefore fortunate that one of the few
is with two-dimensional causality in the classes of time-varying systems for which
data will depend on the specific problem. a complete closed-form theory exists is
In the conteyt of nonrecursve processing, the class of periodically varying di3cretc-
the order in which the data are processed time systems.1 2,3 l 4 There are several
is irrelevant, and so no real conflict can versions of this theory, but they all des-
arise; but the very nature of recursive cribe scalar-Input scalar-output systems
processing, in which the output at a point whose period of variation is n sampling
depends on the output at previous points, periods by nxn time-invariant transfer

demands that an order be specified. This matrices. We proceed to outline one

order is almost always taken to be a version.
"scanning" order, in which a line is pro- Input and output sequences are represented
cessed from left to right, followed by the by the transform:
next line below it, etc.. We will assume
that this is the order in which processing (uo ,ul''" ) U U(Z)

occurs for the remainder of this paper. where UoU - n 2n .

There is, however, an inconsistency between UL+U. n +l
this orderin; and the assumption of shift- U(Z): 1 nIl
Invariance. While not serious in practice, uoZ +u n+2 +

it does indicate hat the theory may run L n
into difficultie. This inconsistency Un-l 2 -l.n-.
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so that the transform of a scalar signal immense difficulty; namely, n must be

is an n-dimensional column vector. The taken to be the number of points in a line

input-output relationship of a scalar of data, and so is usually very large.

system of the type under consideration is This implies that nxn matrices of rational

then given by functions will be totally intractable. Be-

Y(Z) = P(Z)U(Z) fore discussing this problem, however, we
will outline how the two-dimensional situ-

where P(Z) is an nxn matrix of rational ation relates to the p riodlcally time-

functions of the form varying approach. From now on, n will de-

Pij(Z) Z kqij(Zn) note the number of points in a horizontal

where line.

i-j i 1 j As an example, we consider a mask of the
k n+i-j i < j form

For example, a memoryless time-varying a11 a10 al,-1

gain a(m) is given by the diagonal matrix a a
a01 s00

a(l) 0 point at which processing is occurring.

L. Specifically, if the above were the input
0 a(n)- mask of a purely nonrecursive filter, the

while the unit delay is given by the output would be the convolution of the

matrix above array with the input array.

0 ....... Z The two-dimensional Z-transform of the

0. above array is given by

0Z " p(Z1 ,Z2 ) a aoaZ (a11 Z+t,+V _izl)Zl.
- . . .

2 0 0 1 2 0 . i 2 1

L c :.Z 0 If one uses the McClellan transform, that

is, concatenates the rows and regards the
(It followb that in this representation, filter as a one-dimensional shift-Invariant

time-invariant systems are described by filter, the resulting one-dimenslonal Z-

circulant matrices), transform is

:t can be shown that by using the above p(Z) a ao+al Z + (allZ+ao+al _ 1 
4 )Z'n .(1)

transformation, s'ystems which vary with

a ser!.:d equal to n sampling periods can To put this in 2learer perspective, we

te treated zrecise>y as f. they wen- :- will write it in terms of our time-varyIng

_:.ut :.-cu:put time-invariant syst ms; model: the resulting transfer operator is
-'.particular, such a system is stable if r Zn n-l

and only: if the matrix ?( ) is invertible n l ""

.zr all Z with IZI f !. a 0 1Z+a 11Z 0

A? .ICAT:C TO ' - EN'S - C.. AL P(Z)- <2)TROCESSIN:G

'he thecry cutilned in tho a ZCn-  aooa', n

-~ nerultred~ t~ 1- 00 a 1c,
-c'- -wc-d.merstna data

:r-' ,, w,: :nedaey nc':ntr an -a circulant matrix, as expected.
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In practice, of course one does not imple- 5. POSSIBLE DESIGN APPROACHES

ment this as a strictly shift-invariant As was pointed out previously, a major

one-dimensional filter; one puts in appro- problem blocking any realistic applica-

priate boundary conditions when a boundary tion of the above approach is the size of

is crossed. It is easy to see that, if the matrices involved. This problem is

zero boundary conditions are assumed, the not completely hopeless, however, for the

transfer operator which describes the following reasons. Firstly, the matrices

actual processing performed is which occur are banded with bandwidth

+a dn a a Z n ... 0, 0equal to the horizontal width of the fil-S n+1l 1 ter array. Thus for reasonably-sized fil-
a01Z+a11 Z ters, the matrices are both sparse and

?(Z) 0 (3) structured. Secondly, one does not nor-
" mally want to design filters whlch are

0l wildly shift-varying; it is usually de-

-j sireable to have a filter which is approx-

-a Toeplitz, rather than a circulant, ma- imately shift-invariant far from the

trix, since the processing is now (slight- boundaries. In this connection the change

ly) time-varying, from circulant to Toeplitz which occurred

While this may seem like a trivial modlfi- in the previous section (as a result of

cation, it can in some situations have inserting boundary conditions) comes to

serious theoretical effects. For instance mind, and suggests that "displacement rarV'

if one specializes to a quarter-plane ideasC5] may have some relevance here.

filter by setting a 1 ,I = 0, the time- Another possibility is to replace the

invariant stability condition is (from shift in the horizontal direction with

(1)) some other "basic dymanical operator" and

a00 +a01 Z+a10 Zn+a 11Zn+l0 for IZI 1. (4) to design in terms of this operator.

.owevor, if one uses the tine-varying The most obvious choice is a descrete

version (3) in this situation, the result- approximation to the derivative, which

ing matrix is a lower triangular Toeplitz has the following advantages:

matrix whose diagonal element Is 1) It is local, and so can be calculat-

ed efficiently.
00 a 0Z

n  2) At the boundaries, it can be calcu-

and so the stability condition in this lated as a one-sided derivative, and

case is so avoids the problem of boundary
values.

a00a10zn# 0 for JZi s 1 (5)

The simplest operator which is a discrete
which is substantially different from (4). approximation to the derivative and en-

(The problem here is that if (4) is not joys both of these advantages is the

satisfied and *5) 1s, the matrix (3) will matrix

-e invertible fr all V < , ut the in-.. -..
verse matrix may -on:ain extermely large T 2 -"

elements, and so while the system is L ,

stable, in principle, it le unstable 3' 0

in practice.)
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where a2' a3'''" are arbitrary but fixed. more, rather than less, stringent. We

The algebra generated by T, the constants, note in passing that T always contains

and the vertical shift is then commutative, a two-dimensional Jordan block with

and so offers the possibility of a tract- zero eigenvalue.

able theory. The major remaining question 4)The previous two paragraphs taken to-

concerns the choice of the constants 2,gether imply that the, ominimal polynomi-

a3.. While this is currently under inves- al should be of low order. This has the
3- ~further benefit of en; uring that the

tigation, and no definitive results have

been established, the following points may support of the filter in the horizontal

be noted. direction is of limited width; achieving

1)f one designs a filter in terms of the this is a major problem in the shift-

derivative in the horizontal direction invariant design approach.

and the shift in the vertical direction 6. CONCLUSIONS

one can then replace the derivative by We have pointed out some theoretical in-

the discretized version T. consistencies between the assumption of

2)Since the spectrum of the derivative is two-dimensional shift-invariance and the

the entire imaginary axis, while the usual scanning model employed in the pro-

spectrum of T can be adjusted by vary- cessing of two-dimensional data. As a

ing the ak' this approach yields the remedy for thisinconsistency, a one-dimen-

possibility of choosing the approximation sional periodically time-varying model has

so that the discretized filter is stable been proposed; this also has the advantage

even when the original designed filter of not requiring boundary conditions. Fin-

is unstable, for example by concentrat- ally, two possible design approaches have

ing the spectrum of T on a few points, been mentioned.

To be specific, if the denominator of REFERENCES
n

the original filter is Iofj (D)Zj  1. J.H. McClellan, "The Design of 2-D Dig-
jo ital Filters by T;-ansformation", in

where D is the derivative in the hori- Pro,:. 7 th Annual Pr'nc!.nn C~nr. on
Information Sciences ard Systems, 1973,zontal direction, and Z the shift in
pp. 247-251.

the vertical direction, the stability 2. E.I. Jury and F.J. Mullin, "The Analysis

condition for the discretized filter of Sampled-Data Control Systems, with a

will be Periodically Time-Varylng Sampling Rate",

n IRE Trans. Auto. Control, AC-(1959)

Z f (A )Z 0 , Izi - 1 (7) 15-21.

j 3. J.H. Davis, "Stability Conditions Deriv-

of T. Thus the ed from Soec~ral Theory:Discrete Systems
for all egenvalues e with ?eriodic FeedbacK", SIAM J. Cont.
smaller the set of eigenvalues, the 10 (1972, 1-13.

less stringent the stability conditions. 4. R.A. Meyer and C.S. Burrus, "A Unified

3)For practical stability, if the eigen- Analysis of Multirate and Periodically
Time-Varying Digital Filters", IEEE

value XI is associated with a large Trans. Circuits and Systems, CAS 22 k3)

Jordan block, the theoretical condition (1975), 162-168.

(7) must be replaced by 5. T. Kailath, A. Viera and M. Morf, "In-mverses of Toeplitz perators, Innova-

f (w)ZJ + 01 VIZI 11 !1 tions, and Orthogonal Polynomials",
j  ' SIAM Rev. 20 '197S) 106-119.

for all w such that 1w - A,1 f 1.

Thus using large Jordan blocks can act-

ually make the stability conditions
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LUMPED-DISTRIBUTED NETWORKS AND DIFFERENTIAL-DELAY SYSTEMS

J. Murray

1. INTRODUCTION. In this paper we will consider some known

properties of differential-delay systems and their relationship

to the lumped-distributed networks studied by classical circuit

theorists. The two theories are fundamentally the same, but the

emphasis is different; in particular, the first question asked

in the system-theoretic approach tends to be about stability,

while the circuit-theorists' primary interests have had to do

with passivity. A further major difference is that the system-

11enrists are concerned with the (infinite-dimensional) state

-aes associated with these systems, while the circuit-theorists

tuw to ignore the state space, and concentrate entirely on

inpit-output properties.

Actually, the similarities and differences between these two

fields (and others) have been treated recently (and excellently)

by Kamen [l. The present paper gives a different viewpoint,

however, being an analytic approach in contrast to the algebraic

approach in [l. Further, it considers only input-output proper-

ties of systems, and may be considered as a study of the simplest

case of the convolution algebra approach in [2,3J. It is hoped

that the following discussion will give some intuition for the

last-mentioned approach, and in particular for the relationship

between it and the classical circuit-theorists' use of several

complex variables to model lumped-distributed networks.

2. DIFFERENTIAL-DELAY SYSTEMS: ALGEBRAIC ASPECTS. The sub-

ject matter of this section has been extensively treated in many
0 American Mathe atical Socim 1980
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places; we give a quick summary simply to fix ideas. We will

work with the simplest possible case of differential-delay sys-

tems, namely, the case where all the delays are integral multi-

ples of one fundamental delay; time-units are assumed to be

normalized so that this fundamental delay is of length one. The

input-output mapping for such a system (assuming BIBO stability)

is given by convolution with an expression of the form

H(t) - F(t) + . Ki 6(t-n) (I)

ia-rn

where F(t) is a matrix-valued function in LI(-m,,-) and the

Ki are matrices with f |Kij < .; this is the simplest case
i-

of the algebras studied by Callier and Desoer 2.3].

For conceptual purposes, we have included non-causal systems

in the above; in the real-world case of causal systems, we have

F(t) - O, t < 0
and

Ki , 1 < .

For a system composed of a finite number of differentiators

and integer delays, the Fourier transform of a transfer operator

of the above type is well known to be of the form

R(s,e 5s) (s - iw)

where R is a rational matrix function of two complex variables.

Since the functions s and e5s are algebraically independent,

R is unique. Also, since the transform of a composition (con-

volution) is the product of the transforms, it follows that an

algebra of input-output operators of the type (1) arising from

finite systems is isomorphic to a subalgebra of the field of

rational functions in two variables (over I or C, as appro-

priate). The realization problem for differential-delay systems

consists of identifying this subalgebra, and has been treated in

several places (e.g. [4]). Since it is not our purpose here to

treat either the algebraic aspects of these systems or the
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problems of their realization, we merely repeat that the alge-

braic treatment rests on the fact that there is an algebra iso-

morphism between the appropriate set of input-output operators

and an algebra of rational functions in two variables. Thus one

may say that from the algebraic point of view, systems of the

type (1) can be treated as two-dimensional.

3. DIFFERENTIAL-DELAY SYSTEMS: ANALYTIC ASPECTS. Much of

the power of transform methods in electrical engineering arises

not simply from the algebraic isomorphism between a convolution

algebra and a function algebra which these transforms define,

but from the more "analytic" properties of the isomorphism; e.g.,

the relationship between pole-location and stability, or between

passivity and the positive-real property. Both of these rela-

tionships will be discussed below as they apply to the present

class of operators. The most obvious analytic property of these

operators is that they have a norm defined by

I -I f F(t)Idt + I Ki (2)

For convenience, we will restrict ourselves to scalar-input,

scalar-output systems from here on; this case contains all the

essential features which we wish to discuss. With this assump-

tion, it is easy to check that the operators of the form (1),

with the norm (2), form a commutative Banach algebra which we

will denote by B. It is therefore natural to try to comoute

the Gelfand spectrum of this algebra, and see if it can contri-

bute to the understanding of these operators. This can be done

in various ways, but one of the most natural is to begin with

the spectrum of L (,-), and investigate its behaviour under

the transformation discussed in the previous section, which

changed the original one-dimensional problem into a two-

dimensional problem. This transformation is given by the map-

ping

:C - C2
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defined by

?(s) - (s,es)

In order to avoid working with points at infinity, it is conven-

ient to take a bilinear transform of the first coordinate, and

work instead with the mapping

defined by f) a ( C2

This has the advantage that f maps the right half-plane

into the unit bidisk, U2, and maps the imaginary axis (which

is the spectrum of L,( ,-)) into the distinguished boundary

T. of U2. (We will use the notation

U a {Z C llZi <

O {z E tIZI s 11

T- {Z C lizi -1
and U2 - Ux U, etc...)

Since 3 has an identity, its spectrum is compact, and it is

natural to conjerture that this spectrum, o(B), is the closure

of the image of the imaginary axis. This is in fact the case

.5.. The image is defined by

-iw e') wC

Representing the torus as a square with its opposite edges

identified in the usual way, we can draw an approximation to

c(B) as in Fig. I. It consists of the circle a 1 together

with a line which is asymptotic to this circle.

As mentioned in the introduction, one of the most important

oQuestions in system theory is stability. In virtually every

situation in wnich it arises, input-output stability is eouiva-

lent to some operator having a bounded, causal inverse. It is

'cr tnis reason that transforms are useful; invertibility of an
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element in a Banach algebra is equivalent to invertibility of its

(Gelfand) transform at every point in the spectrum. However,

the spectrum in Fig. 1 is that of 8 and so nonvanishing on this

set impliles only the existence of an inverse--not necessarily a

causal inverse. There are two equivalent ways of deciding

whether or not a causal inverse exists; the first ("Hurwitz")

approach is to find the spectrum, S, of the causal subalgebra

of 3, and check for nonvanishing on this set. (The second

("Nyquist") approach will be discussed in the next section.)

Exactly as in the case of the spectrum of 8, one is led to

conjecture that S (the causal spectrum) is the closure in

of the image of the half-plane (the spectrum of L[O,-)) under

f. Again, this is the case. While we can no longer draw a pic-

ture of this spectrum, we can get a good idea of what kind of

object it is. Its intersection with U2 is the image of a one-

(complex) dimensional manifold under a proper holomorphic map,

and so is a two-dimensional analytic subset of U 2. The inter-

section of S with the boundary of U2  consists of two parts;

the spectrum of 8 described in the previous section, and the:

disk
{(lZ2)lS12I < 1)

The upshot of all this is that the spectrum is a very small

-22
subset of U2  While nonvanishing of a function on a one-

dimensional analytic subset of U together with nonvanishing

on T2  can imply nonvanishing on all of 02 (6,7], o(S) is

much too small a subset of T2  for any such conclusion to be

possible in this case. Thus we are led to the conclusion that

stability of a system is equivalent to the nonvanishing of a

two-variable rational function R(Z1 ,Z2) on the fairly compli-

cated one-dimensional subset, S, of a2; or equivalently,

to the transcendental function

being bounded away from zero in the half-plane. In either

case, from the analytic point of view, one has a strictly
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one-dimensional problem. The two-variable approach appears

merely as a device which gives one a convenient way of calculat-

ing the spectrum of the appropriate convolution algebra.

4. DIFFERENTIAL-OELAY SYSTEMS: A TOPOLOGICAL ASPECT. We

digress from the main purpose of the paper in this section in

order to discuss the "Nyquist" approach to stability mentioned

above. The essence of this approach is that instead of looking

for nonvanishing of the transform on a spectrum bigger than a(S)

one looks for conditions (in addition to nonvanishing) on the

behavior of the transform on a(S) itself. The classic case of

this is, of course, the Nyquist criterion itself, where one

demands that the transform in question does not vanish on the

imaginary axis, and in addition that the image of the imaginary

axis under the transform does not encircle 0. In other words,

one associates an index with the operator in question and, assum-

ing that the operator is invertible, demands that the index be

zero for causal invertibility. (We are assuming here that the

original operator is itself a bounded, causal operator). In-the

case of the Nyquist criterion itself, the index is an integer,

but one can not expect this to be true in general. The most one

can expect is that the index will take its values in some (pos-

sibly partially ordered) group. Since it is known (for fairly

general convolution algebras over 'R) that a causal invertible

element a has a causal inverse if and only if a is in the

connected component of the identity in the group of invertibles

in the algebra (see [8]), the appropriate "Index Group" here is

the quotient group: Invertibles/component of the identity.

(For an arbitrary Banach algebra, this group is actually known

as the abstract index group of the algebra [9]).

This would be of little use were it not for the fact that the

structure of this group is known for commutative Banach algebras;

for such an algebra, the abstract index group is given by

Al(spectrum, 2)
V

the first Cech cohomology group of the soectrum of the algebra,
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simpler proof using the cascade loading formula is given in [13].

there appears to be little point in making the above discussion

rigorous. The important point is that whereas stability imposes

restrictions on the behavior of the two-variable transform only
on thin subsets of T2  and U2 , passive synthesis imposes con-

straints over the entirety of both sets. From any point of view,

the passive synthesis problem is two-dimensional.

6. STABILITY FOR VARIABLE DELAYS. It is clear from the pre-

vious section that if one considers the stability of a system for

aZZ lengths of delay time, one will have a two-dimensional prob-

lem. Various results can be derived using this approach [14].

As an example we have:

PROPOSITION: Suv.oae a aysta R ie oapsed of a finite

nur-ber of differntiators and deZayjs of eo'taZ Length a, so that
its two-vaiabU transfer function is rationaZ:

R(Z1,Z) 
P(Zl Z2)

As#".e that R has no _7ndetermi'nacies on T2. If the foZlowing

conditions are satisfied:
i) There e-sts a nmber M such that R is sta Ze for

aLL a > M
ii) Q(l,Z 2) 0 0, IZ21 " I

iii) R is stable for a a 0,

zhar R is stab:e for all a > 0.
Proof.

u u(B=) {(l,eie)1o < e < T}

so that the hypotheses imply that Q(Zl Z2) has no zeros on T2.

Condition iii) implies that O(Zll) # 0 for iZ1l < 1, and
this together with condition ii) implies that Q(ZI,Z2 ) # 0 for
'Z1  1, [Z2  1 £6,7]. It follows imnediately that R is

stable for all a > 0.

Condition iii) is actually unnecessary here; it can be elimi-

nated by a slightly more sophisticated argument.
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with integer coefficients. It is intuitively clear (and not dif-

ficult to prove) that

H (o(s), Z) as Z

Thus in the present situation, stability requires that two

distinct integer indices be zero, rather than one as in the clas-

sical Nyquist criterion. This is not surprising--intuitively one

might expect to have one index for each "independent"-kind of

delay element. While one can get some feeling for these indices

by examining the generators of H1(o(5),), it must be admitted

that this is by no means the best way of actually calculating the

indices for any given element of 8. In fact, the problem of

calculating these indices for elements of algebras considerably

more general than B has already been solved [l,1ll in a much

more straight-forward manner than that discussed above.

However, the above discussion does bring out a numbei of

points. The major one is that the stability of lumped-distrib-

uted systems is associated with the algebraic topology of the

spectrum of the appropriate Banach algebra. Further, the impor-

tant topological entity is the first Zech cohomology group--and

we note that in the case of a(S) this is not the same as, e.g.,

the first singular cohomology group (in contrast with the classi-

cal case). Thirdly, one can tell simply by looking at the spec-

trum what kinds of conditions are needed for stability--in this

case, that two integers vanish. Finally, since H(o(S),Z) 
Z one can say in some vague sense that, from the topological

or index point of view, the stability problem in 8 is two-

dimensional.

S. LUMPED-DISTRIBUTED CIRCUITS: PASSIVE SYNTHESIS. As was

mentioned in the introduction, the treatment of circuits consist-

ing of lumped elements and commensurable transmission lines is'

formally similar to that of differential-delay systems. There

are two major differences however; in the first place, the func-

ttons involved are input parameters (impedance, admittance, or

scatterirnc) rather than transfer functions (we will. again confine
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our attention to the scalar case): secondly, the really inter-

esting problem is passive synthesis.

The purpose of this section is to give some feeling for the

fact that, in contrast with the stability problem, the problem

of passive synthesis is genuinely two-dimensional.

To this end, suppose that we are given a two-variable rational

function R(Z1,Z2) and that we wish to synthesize a passive one-

port whose scattering parameter is

p(s) - R(x" , e~

Exactly as in the classical case, it is necessary that p be

bounded real on the right half-plane or, equivalently, that R

be bounded real on the set S discussed in section 3. However,

if a circuit devoid of sources is constructed from lumped com-

ponents and unit delay lines, it remains passive when delay lines

of any nonnegative length replace the unit delays. It follows

that the function

pa(s) - R( I- . t-o s)

is bounded real on the right half-plane for all a > 0 or equi-

valently (in an obvious notation) that R is bounded real on

the set S , > 0. While it is rot true that U S like this

fills out the bidisk (U S is three-dimensional, while the

bidisk is four-dimensional), it is true that as a varies over

the nonnegative real numbers, the set o(8 ) drawn in Fig. I

moves in such a way as to sweep out all of T , with the excep-

tion of the set (labeled C in Fig. 1):

C - {(e 1 ,e 2 )1e1 a 0, e2  01

Considering the known results about the stability of two-

variable systems in terms of their behavior on T2  (6,7], and

of their behavior on three-dimensional subsets of U2  [12] it

is then quite plausible that a necessary condition for passive

synthesis is that R(Z1,Z2 ) be bounded real on all of U2.

This in fact is well known to be the case, and can be proved by

consideratiors alcng the above lines. However, since a much
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7. SYSTEMS WITH IRRATIONALLY RELATED DELAYS. We have been
concerned throughout with systems whose delays are all integer

multiples of one fundamental delay. If there are n independent

delays over the rationals, then one gets, in the usual way,

rational functions in n+l variables. We remark in passing

that if one has two independent delays without any differentia-

tions (lumped elements) one will again get rational functions in
two variables. However, the theory here is very different from
the lumpeo-distributed case discussed previously, since now the

spectrum is all of T2., and the causal spectrum is all of 02.

For this reason, the stability theory of pure-delay systems with

several incommensurable delays is much simpler than that of dif-

ferential -delay systems.

In the general case, we will merely indicate what the spectrum
looks like. For systems involving n independent delays and

differentiations, a(S) consists of a line together with an n-

dimensional torus, the line being asymptotic to a dense line

(i.e., one which winds around the torus at an irrational angle)
on the torus.

The set S (the causal spectrum) consists of o(B) as
described above together with one-dimensional analytic set in

Un l , and an n-dimensional polydisc (whose distinguished bound-

ary is the n-dimensional torus mentioned above) contained in
the boundary of Un l. Again, the spectrum of the convolution

algebra, a(B), can be found by examininq the image of the

imaginary axis under the mapping which transforms the one-

dimensional problem into an (n+l)-dimensional problem; that is,

the several-variable aporoach may be regarded as a vehicle for

Computing the spectrum.
Finally, the "stability index grouo" is isomorphic to 20+

a more detailed analysis shows that when one allows arbitrarily
many delays of arbitrary lengths, this group is isomorphic to

2 P (see 0;, 113)1
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8. CONCLUSIONS. Our main purpose here has been to give a
discussion of the radical differences which can occur between
algebras of systems which are formally similar. These differ-
ences may arise from the problems under consideration, as in the
difference between the problems of stability and passive syn-

thesis; or from differences in the classes of systems themselves,

as in the stability problem for systems composed of differentia-
tors and integral multiples of one delay compared to the same

problem for systems i'nvolving two irrationally related delays.
A further objective has been to demonstrate the utility of

the Gelfand spectrum in connection with these problems. In the
classical cases of either lumped, continuous-time systems or
discrete-time systems the Gelfand spectrum is a circle, (or a
disk in the causal case), and the usefulness of the representa-
tion of elements of the system as functions from this set into

is well known. In mixed differential-delay systems, the

spectra are considerably more complicated objects, and the intui-

tion to be gained by studying the action of individual systems

on these spectra is not quite so transparent. Nonetheless, it
is hoped that the abovo discussion has shown that even in the

nonclassical cases the spectrum is significant, and that know-

ledge of the spectrum of the algebras involved can give a deeper

insight into the behavior of the systems.
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Abstract

A method is described for the design of two-dimensional half-plane

recursive digital filters, in the form of a cascade connection of filters

which are of second order in the (principal) direction of recursion, and

of arbitrarily high order in the other direction. The filters thus derived

are shown to be automatically stable, but yield poor responses in the

vicinity of very wide or very narrow bandwidths. Some techniques for

tackling these difficulties are discussed, and the results of applying

these design procedures are shown.
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THE DESIGN OF 2-D FILTERS AS 1-D TIME-VARYING SYSTEMS

Abstract

In a previous paper a theoretical approach to two-dimensional recursive

digital filtering was proposed. This approach was based on the fact that

two-dimensional recursive filtering with the normal "scanning" recursion

is in reality a one (time) - dimensional periodically time-varying discrete-

time operation. Time-varying systems are normally intractable; periodically

time-varying discrete-time systems, however, are among the few classes of

time-varying systems for which a complete, closed-form theory exists. This

theory transforms single-input single-output time-varying systems of period

N (where we assume that the sampling period is 1) into a subclass of N-input,

N-output time-invariant systems. There is a possibility of using classical

multi-input multi-output time-invariant system theory to design 2-D filters

in this setting.

There are two problems which arise. Firstly, N is usually very large,

and so direct manipulations are impossible. Secondly, the time-varying sys-

tems correspond to only a subset of multi-input multi-output systems, and

the classical design methods do not necessarily yield a design in this

subset.

This paper exhibits a desiqn procedure which takes care of both of

these problems, and shows examples of filters designed by using this

procedure.
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6. Summary

Although one might, upon a cursory investigation, conclude that the image

processing problem was simply a two dimensional generalization of the standard

1-D signal processing problem this is not the case since both the signa and

noi.e phenomena encounteted in the image processing problem tend to be either

nonlinear and/or. space variant (the spatial analog of time-varying). Indeed,

both photo-etecttic 6hot noide and 6itm grwin noise are highly signal dependent

in nature while the edge effect6 in a finite image introduce space-variant

effects. Although a theory for coping with these nonlinear and space-variant

effects has been developed in a 1-D setting, in the 2-D image processing problem

these techniques have proven to be computationaley prohibitive. As such, the

present work unit is directed towards the problem of developing computationatly

viabte algorithms for the digitat image proce6ing p4oblem. These include

5ub-optimat agorithms for estimation in signal-dependent noise, analytic

techniques for reducing the effective dimenzionatity of an image and techniques

for exploiting the signat dependent nature of the noise phenomena.
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Estimation in signal-dependent film-grain noise

Gary K. Froehlich, John F. Walkup, and Thomas F. Krile

Optimal estimatos are derived for a signal-dependent film-pain noise model, and the effect of signal-de-
pendence on the estimaors's structures is investigated. Due to the mathematical complexity of tbese opti-
mal estimators, various suboptimal estimators are proposed. Computer siulations are then presentad
which compare the optimal and suboptimal estimators with regard to meam square estimation error, sensativ.
ity to signal-dependence, and robustness with respect to the a prori signal probability density functon.

L Introduction tion, MSEE, sensitivity to signal-dependence, and ro-
A number of physical noise processes are inherently bustness with respect to the a priori probability density

signal-dependent These include photoelectronic shot p(s). This is achieved through a comparison of the
noise,1 magnetic tape recording noise,2 and of course estimators's structures and by using computer simula.
photographic film-grain noise.'-3,4 In an earlier paper,4  tions.
a very general model was presented which embodies all To simplify the comparisons as much as possible,
the just mentioned processes and more. That model various assumptions about the model of Eq. (1) are
is presented again in necessary. The signal-independent noise terms, ni and

n2, are assumed to be zero-mean normal random vari-r = s + kf(s)nl + 112. ables with variances oj and oi, respectively. Note-
where r is the noisy measurement; s is the underlying tionally, this is represented by
signal to be estimated, which is generally characterized - N(O.a). i - 1.2- (2)
by its probability density function p(s); f(s) is a zero-
memory (spatial) function of the signal; ni and n2 are Furthermore, a specific function for f(s) must be chosen.
signal-independent random noise processes; and k is a The function f(s) = s P is of particular interest, as it
scalar constant, which, when set equal to zero, yields the represents photographic film-grain noise when s rep-
signal-independent additive noise modeL It is further resents photographic density, p is between 0.2 and 0.7,3,4

assumed that n1, n2, and s are mutually statistically and k is a scanning constant. The exponent p is taken
independent. to be 0.5 in the remainder of this paper. Thus

It has already been shown that estimators which ig- f(s) = (3)
nore signal-dependence of noise pay a penal4- in terms
of mean square estimation error (MSEE) and that in- The final assumption is with regard to the a priori
clusion of the signal-dependence, while increasing the probability density function (pdf) of the signal i.e., p(s).
complexity of estimators, results in potentially superior Several cases are treated in Refs. 4 and 5. These in-
performances.' 5 In this paper, we intend to compare clude the Gaussian, Rayleigh, uniform, discrete-uni-
various estimators with regard to ease of implementa- form, and folded-normal6 pdf's, which were chosen for

their tractability or their positivity constraints. For
purposes of comparison and brevity, only the Gaussian,
Rayleigh, and uniform cases will be presented here.
With the above assumptions, the model becomes

r -S +/ rsn, + n2. (4)

When this work was done all authors were with Texas Tech Uni- and the conditional measurement r, given s, is distrib-
versity, Department of Electrical Engineering, P.O. Box 4439, Lub. uted normally with mean s and variance
bock, Texas 79409: Gary Froehlich is now with Sandia Natuona)
Laboratories, Albuquerque, New Mexico 87185. V(s) - kai + CC (5)

or, in the notation of Eq. (2),

p(PIS) - NIS.(s)]. (6)
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O. . lines represent cases in which at the variance of the
signal-independent noise term, is fixed while k 2fff,

" which is proportional to the variance of the signal-
dependent noise term, is allowed to vary. The dashed
lines represent cases in which k 2aj is fixed and oi is al-
lowed to vary. The actual numerical values of all the

- -- %,, •parameters are realistic, and they serve to restrict the
2 ....- photographic density variables to a practical range of

zero to three.'0  Also, inspection of Eq. (4) shows that

- - -- -- independent additive noise model r - s + mi.
Several general conclusions Ire implied by exami-

nation of Figs. 1-3. In all three cases, for example, the
estimators exhibit greater sensitivity to the signal-
dependent noise term than to the signal-independent

0 I I I I
I 2 3 r

Fig. l. MMSE estimator structure for Gaussian p(s): solid live (oaj
= 0.3. k2oj varies); dashed line ( a'j = 0.3, al varies); p(s) ~ (-5

0.25). -u
3-

It. Optimal Estimation-Minimum Mean Square Error
Optimal estimators based on the measurement model

of Eq. (4) are now presented. The first optimality cri- 2 -

terion considered is minimization of MSEE, or equiv-
alently, minimization of the Bayes's risk for a quadratic
cost function.U Computationally, this is merely the
conditional mean of the a posteriori probability density - a-

function p(s Ir). Thus the minimum mean square error I-
(.LMSE) estimate is given by

" . sp(str) s. (7)
0 r

Unfortunately, the a posteriori density p (slr) is very 1 2 3
difficult to compute. Bayes's rule can be applied, Fig. Z MMSE estimator structure for Rayleigh p(s): solid line (di
however, to rewrite Eq. (7) as 0.3, k2of vares); dashed line (k2a 0.3, AI varies); p(s) - Raylegh

- th Man 1 5. V2  0.43.

.P(rls)p(s)ds
J MMSE (8)

where p(r s) is given by Eq. (6), and some particular
form is assumed for p(s). As an example of the com-
plexity of this estimator, consider the computation of
Eq. (8) when p(s) is Gaussian, i.e., ,.0

p(s) - N(M,,). (9)

In this case p(rls)p(s) is given by

,(Is)P() _ I(-s)+ (s -J-/ L (10)
2 r a, V e./ (s V(S) a' j

where u(s) is given in Eq. (5). Similar complexity re- /
sults when p(s) is assumed to be either Rayleigh dis- -

tributed or uniformly distributed.
To arrive at some general conclusions about the

MMSE estimators, the structure of the estimators is
presented. The estimate oMMSE is plotted vs the 2 2 r
measurementr in Figs. 1-3. In Fig. 1,p(s) isassumed Fig. 3. MMSE esumatorstructureforuniformp(s): Solidline(oj
to be Gaussian, in Fig. 2 it is assumed Rayleigh, and in - 0.3, k-j varies); dashed line (k2aj a 0.3. uj varies): p(s) - uniform
Fig. 3 it is assumed uniform. In each figure, the solid wth mean = 1.5. 0: - 0.75.
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moments of s do not change for the class of images
under study, the numerical integration of Eq. (8) can be
done off-line for the entire practical range of measure-

3 ments r. The only on-line operation then is reduced to
a table look-up procedure to match the precalculated
estimate with the corresponding measurement.

- [it. Optimal Estimation -Maximum a posteriori
As an alternative to minimization of mean square

error, we now consider an estimator which minimizes
s the Bayes's risks for a uniform cost function. This WMs

out to be the conditional mode of the a posteriori
probability density function >(slr). Since the mode is
merely the peak value of the pdf, the estimator is often
referred to as the maximum a posteriori (MAP) esti-
mator-8 9 The MAP estimate is treated in detail in Refs.

0, 4 and 5. For the model of Eq. (4), the MAP estimate is
I 2 3 r the solution of a polynomial. For p(s) normally dis-

Fig. 4. MAP estimator structure for Gaussian p(s): solid line (o tributed, the polynomial is cubic. For Rayleigh p(s),
0.3. k2 varies); dashed line (k -l= 0.3, 2 varies); p(s) -N(I.5, the MAP equation is of degree four, and for uniform

0.25). p(s), the polynomial is quadratic. The latter case, with
uniform p(s), is equivalent to maximum likelihood
(OvL) estimation.4.5,8 -9 The NM estimate is used when
no prior information about the statistics of s is assumed
or known. The uniform distribution for p(s) corre-
sponds to this worst case.

As with the MMSE estimator, the MAP estimator
structures are presented as plots of the MAP estimateslie ,. vs the measurements r. Figure 4 is the .MAP estimator
structure for Gaussian p(s), Fig. 5 is the MAP estimatorC't CO struct:ure for Rayleigh p(s), and Fig. 6 is the ML. esti-

mate. Once again, the solid lines repri. .nt the cases
2- .I" wherein 4 is fixed and k2ol is allowed to vary, and the

dashed lines correspond to the case where k202 is fixed
and A2 is allowed to vary.

The overall trends in these three figures are very
similar to those indicated in Figs. 1-3. Again, the es-

- - timators become increasingly nonlinear as p(s) departs

0 I
I 2 3 r

Fig. 5. MAP estimator structure for Rayleigh p(s): solid Line (aj ' .0(OO)

0.3. k j varies); dashed line (k2oll a 0.3, 02 varies); p(r - Rayleigh /"'/ / -
with mean - 1.25, 0.2 - 0.43. 3- 0, OITO

one. Also. in all three cases. if either noise term in- 2-
creases without bound, the estimate becomes the (as-
sumed known) mean of s. Furthermore, note that the /

more P(s) deviates from normality,, the more nonlinear , /
the estimator structure becomes. This implies that I
estimator performance will suffer if the assumed form
ofp(s) is wrong. Ideally we would like to find a robust
estimator. i.e., an estimator for which the structure is
invariant to changes in p(s). 0-

One final note about the MMSE estimator is in order. -0.2 , I

The complexity of Eq. (8) would seem to discourage the 2 2 3 r
use of this estimator on a point-by-point basis over an Fig. 6. ML estimator structure: solid line (V; a 0.3, k2dj varies);
image. However, if the parameters k,j.oj, and the dashed line (Watj 0.3. vi varies).
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from normality. Also the sensitivity to the signal-
dependent noise term is much greater than the sensi- NAPi 

+ '  (13)
tivity to the signal-independent noise term for all three where it was assumed that s - N(s,o2). This requires
cases. However, the value of the estimate when k 2o2 a priori knowledge of g, and ai, which remain fixed in
increases without bound is always lower than the esti- the estimator of Eq. (13).
mate when a2 increases without bound. This is quite It can be easily shown that the expected value of F is
different from the MMSE estimators which converged ,, i.e.,
to the same value regardless of which noise term became
unbounded. El,I - ;. (14)

Another characteristic shared by both the MAP and Thus we can eliminate the need for a priori knowledge
MMSE estimators is computational complexity. It is of A. and simultaneously allow the statistics to vary
generally &ndesirable to have to solve a polynomial at spatially by replacing Ms in Eq. (13) with an estimate of
every potht otmeasurement (pixel), just as it was un- , F. The modified signal-independent MAP
desirable to integrate numerically at each point. (,, nam ely, mat. the n eigine
However, if the parameters k, a,, 42, and the statistics estimator then becomes
of s do not change appreciably for the class of images ,,t .O.T2 04. r + Al (
under study, the problem is again reduced to one of an al + di 2 + fa i (

off-line table generation followed by on-line table where Fj was given by Eq. (11). Because the MSIMAP
look-ups, estimator of Eq. (15) adapts spatially over the image,
IV. Suboptimal Estimation it should out perform the unmodified MAP estimator

of Eq. (13) when both are applied to the signal-depen-
The major limitations of the optimal estimators just dent noise model of Eq. (4).

presented were their general computational complexity A potential limitation of the MSDMAP algorithm is
and their sensitivity to choice of p (s). It might prove the requirement that a' be known a prior. There may
acceptable to sacrifice some theoretical performance for be situations where this is not unreasonable, such as
ease of implementation and some measure of robust- when the energy of the signal is known; however, there
ness. Toward this end, suboptimal estimators are next may well be situations when it is quite unreasonable to
irvestigated. require a priori knowledge of any of the signal statistics.

A. Weighted Spatial Averaging An additional modification is required to eliminate this
As a first step, the basic sample mean will be ex- defect.

ploited. The sample mean is certainly easy to imple- C. James-Stein
ment, and it is also known to be the most robust esti- Just as the signal mean is adaptively estimated in the
mator of the true mean. 11-14 The estimation procedure MSIMAP algorithm, the signal variance a, can also be
then is to replace each measurement with the average adaptively estimated within the overall estimator
of that measurement and its neighbors. Ina2-Dsam- structure. Note that Eq. (15) can be rewritten as
pled image, for example, this might correspond to a (1 -Qry + (I -Q),6)
pixel and its eight nearest neighbor pixels. Defining the where
sample mean at the point j as j, where

Q & q2(4l +.

, ' Equation (16) can in turn be rewritten as

the weighted spatial average (WSA) estimate is then ., " F, + Q(r - F,). (18)
JWSA- F. (12) Now the signal-independent additive noise model for

Unfortunately, this estimator has one rather severe which the signal-independent MAP estimator was de-
limitation: it is not robust with respect to the spatial signed has r distributed normally with mean AL and
noise power spectrum. This occurs because the WSA variance oi given by
algorithm is in effect a finite-window spatial low-pass
filtering operation. As such, it does not affect low- 'I + j. (19)
frequency noise, and it destroys high-frequency signal 'I hus
information. QMol.2 .2 (20
B. Modified Signal-Independent MAP ;.r 02+

In an attempt to combine the desirable features of the Rewriting Q in this fashion eliminates the explicit re-
WSA algorithm and the sophistication of a slightly more quirement to know oi. It was assumed at the outset
complex tstimator, the MAP estimator designed for that aj was known, so the problem is reduced to one of
signal-independent additive noise and Gav-sian signal estimating T;. Since r is the measured quantity, the
statistics was modified. The modification allows the obvious intuitive estimate for a2 is the sample variance,
statistics to vary spatially-a consequence of signal- employing the same nearest-neighbor approach used
dependence. The signal-independent MAP estimator to compute the sample mean. Defining the sample
is given by".  variance at location j as v,, it is given by
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Tot ,L s.oi" USC for Gaasslan s ( with i&. - 1.S and V, - o.2s distribution and exhibits uniformly lower MSEE than
w= , - 0 k: ().01 k

2
j - 0.03 the sample mean. This estimator is known as the

Case 0. - 0.03 C .0 1o o James-Stein (JS) estimator.15 .16 It can be shown 16 that

Noise 0.027 0.014 0.012 the MSEE is further lowered by restricting Qj to be
MMSE 0.031 0.011 0.011 nonnegative. With this final modification, the (JS)
MAP 0.024 0.014 0.012 estimator is given by
ML 0.027 0.014 0.012
WSA 0.163 0.164 0.162 ,= Fj + Q7(rj - F) (24)
MSIMAP 0.026 0.014 0.012
iS 0.026 0.015 0.012 where a+ A, maz(0,a), Qj is given-by Eq. (22), and Tj is

given by Eq. (11).
An estimator which is in some sense intermediate

Tole U, ShrauleMWE for ,1,4a~()with it. 1.2S5&W 9, - 0.43 between the MSIMAP estimator [Eq. (15)] and the JS

k 204 -0 h2 f _ 0o )10. estimator [Eq. (24)1 can be obtained by using the sample
Cae - 0.03 - 0.01 = 0 variance ui of Eq. (21) to estimate the signal variance

Noise 0.026 0.012 0.011 4 rather than the measurement variance 4. This es-
MMSE 0.024 0.012 0.009 timator is discussed in Ref. 5, where it is called the
MAP 0.025 0.012 0.010 MSIMAP2 estimator. It was also discussed by Lee,'-ML 0.026 0.012 0.011 who showed some experimental results with noise-
WSA 0.297 0.290 0.293 degraded images.
MSIMAP 0.025 0.012 0.011

JS 0.025 0.012 0.011 V. Simulations

To compare the optimal and suboptimal estimators
Tabe 11. Sampm MSEE for ODisef-Uniform p(s) with Mo*m a .25 ws with each other, it was necessary to perform several

Var. = 0.02 computer simulations. Only a few results are presented
h20o o kZ= .oi 42U 0.03 in this paper. For a very extensive tabulation of results

Case 0.03 0o 0.01 o =0

Noise 0.038 0.011 0.002
MMSE 0.009 0.007 0.004
MAP 0.015 0.009 0.001
ML 0.038 0.011 0.002 .
WSA 0.015 0.005 0.001
MSIMAP 0.022 0.009 0.002
iS 0.027 0.007 0.002 '*

Tal e IV. Smple MSEE for Owscete-Unimtov pi s) with Mean = . d on
Va. = 0.7S

=
2 d.0 k 2 a0.01 k^a

"  
0.03

Case = 0.03 - 0.01 0 i

Noise 0.026 0.014 0.012
MMSE 0.021 0.014 0.014 (a)
MAP 0.023 0.014 0.012
ML 0.026 0.014 0.012
WSA 0.021 0.015 0.015
MSIMAP 0.025 0.013 0.012
JS 0.016 0.009 0.012

1 In (- F)2, (21)n- 1 o

where T1 was defined by Eq. (11).
With C, adaptively estimated by v, the variable Q ,

now varies with location and thus is subscripted as Q),
where 2

;s-J
Q ', (22)

The final estimator resulting from these manipula- .

tions is given by -a ,o. :.o =.: .. = i.: U.N 70.0c

+ • " Qdr. - F) (23) (b)

As it turns out, this is an empirical Bayesian estimator Fig. 7. Uncorrupted signals vith discrete.uniform statistics: (a)
which estimates the mean of a multivariate normal low.contrast Io,.-signal mean case: (bl high-contrast case.
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I to a low-contrast low-signal-mean case (Table Mf), while
the second corresponds to a high-contrast case (Table" z! IV).

Looking at Table 1, two things are immediately ap-
parent. First, the MMSE estimator does indeed exhibit

_V minimum sample MSEE, except in the case where sig-
nal-independent noise dominates. Second, the WSA
estimator performs very poorly. This latter condition
occurs because of the low-pass filtering nature of the
algorithm. The signal s in this case is a sample function

I . p\,-v ]pfv''V' " "from a pseudorandom Gaussian process. Conse-
h. quently, a low-pass filtered version deviates more from'%.a -- 19 .0 1.00 =.Do 4O.W Wm " . W .

AR A, the true signal than the noisy measurement itself does.
(a) Note also that the other estimates perform more or les

equally well.
Turning next to Table 11, where s is a Rayleigh-dis-

tributed random variable, note that the MMSE esti-
mator again has a slight edge over the other estimators
in most cases. As before, the WSA estimator performs
very badly, again due to the nature of s and the effect
of low-pass filtering. Also the remaining estimators
again perform about equally.

Table II shows quite different behavior on the part
of the WSA estimator. This is primarily due once again

Z to the nature of the signal. The particular sample
function used as a signal for this case is shown in Fig.
7(a) and is seen to have very little high-frequency con-

i. .. : :: .- , .tent. Thus a low-pass filtering operation is ideal for

(b)

Fig. 8. Waveforms of Fig. 7 corrupted by equal parts sipa-in .
pendent and signal-dependert noise (all - = 0.01).

g

see Ref. 5. The estimators treated here are as follows:
(1) the MMSE estimator with p(s) Gaussian; (2) the 04
MAP estimator with p(s) Gaussian; (3) the ML esti- C

Cmator; (4) the WSA estimator; (5) the MSIMAP esti-
mator; and (6) the JS estimator.

These six estimators were applied to measurements
generated by the noise model of Eq. (4). Here three 8 _ _ __-___ __

"

noise regimes are considered. They are (1) a signal- • io.oo zo. o O 0 o. 0." 4.0 10.0 "0.00
independent noise only case (k 2o2 = 0,o ffi 0.03). (2) a
signal-dependent noise only case (aji 0,k 2o = 0.03),
and (3) a case with equal parts signal-dependent and
signal-independent noise (C=2a = 0.01). The val-
ues were chosen to insure reasonable SNRs for purposes

of visual comparison. Each Monte Carlo simulation
employed 256 sample measurements, and 200 simula- *
tions were run for each case. V,

The sample MSEE for each of the six estimators, as 2
well as the squared deviation of the noisy measurement W.

from the true signal (labeled simply noise), is tabulated
under columns corresponding to the three noise mix-
tures described above. There are four such tables ;.
presented in this paper. Table I is for Gaussian p(s).
To get some feeling about robustness, p(s) is next
treated (Table II) as a Rayleigh pdf. To allow still ,.. 10.00 MOO 0N .0.1" 1.00 .O ". a
further deviation from normality, p (s) is next taken to
be a discrete-uniform density. Here, however, two sets
of parameters are considered. The first corresponds Fig. 9. MMSE estimates for the noisy measurements of Fig. S.
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eliminating noise with a large high-spatial frequency U

component. The other estimators performed relatively
we! in most cases here also.

The last case considered is the high-contrast case, ,

with s shown in Fig. 7(b), and the results of the simu-
lations given in Table IV. Due to the large step size in
this signal, there is a sizable high-spatial frequency
component. Because of this, the superior performance ,
exhibited by the WSA process in the similar case above :.
is lost here. The various optimal estimators perform --

rather poorly as well due to drastic deviation from the
normalfty assumption. It is the spatially adaptive es- 6..2" 6. 0

timators which performed well in this case, most notably
the JS estimator. (a)

To aid interpretation of the data presented in Tables
I-IV. consider the pictorial representations. Figure 8
illustrates the signals of Fig. 7 after corruption by equal
parts signal-dependent and signal-independent noise.
These corrupted waveforms are then used as noisy 9
measurements, and three of the estimators are applied. C -
The MMSE estimate is illustrated in Fig. 9, the WSA
estimate in Fig. 10 (where the low-pass filtering effect
is evident), and the JS estimate is shown in Fig. 11.

*6.0 -to-at fl .8 30 -o .0.00 6I00 0; 73.0%ORROT

Fig. 11. James-Stein estimates for the noisy measurements of
Fig. 8.

VI. Conclusions

Overall, then, using the MSEE as a performance
measure, several observations may be made. If the
original signal has a great deal of high-frequency con-

- , tent, as does an image with a lot of fine detail, the WSA
- estimator should be avoided. The MMSE estimator

(a) is the most desirable when the signal statistics do not
deviate too far from normality, with the JS estimator
becoming the better choice in-cases of large deviations
from the normality assumption. On the other hand, if

9 the signal is known (or suspected) to have little high-
frequency content, the superior estimator is the WSA
algorithm, especially when substantial deviations from
the Gaussian assumption are also encountered.

:3

This work was supporte-d by the Joint Services
Electronics Program at Texas Tech U. under ONR
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Fig. i0. WSA estimates for the noisy measurements of Fig. S. knowledged.
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6. Summary:

The present work unit represents the continuation of an on-going re-

search program in which modern group theoxetic methods are used to obtain

a solution to the pointing and tucking probtem. Initially, we developed an

algorithm applicable to imagery in the plane whose motion is characterized

by a four parameter Lie group (two translations, rotation, and magnification).

At the present time we are in the process of implementing the resultant

pointing and t'ack.ng atgoxithm (hopefully in real-time) on our video image

processing system and simultaneously extending the theory to a true three

dimensional model.
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ADAPTIVE PATTERN MATCHING USING CONTROL THEORY ON LIE GROUPS*

Thomas G. Newman and Leopold Zlobec
Texas Tech University

Lubbock, Texas

Abstract

A method is given for matching a subpattern of a two-dimensional
image against a stored prototype, where the latter is defined on a
window whose position and shape is determined by the action of a Lie
group of transformations. The method involves the construction of a
path in the control group along which the atching error decreases
to a local minimum.

1. INTRODUCTION how two planar images could be matched un-
der arbitrary affine transformation of t-heA rroblem of classical interest in pattern

recognition is that of determining the plane, if a match were at all possible. In

presence or absence of a particular sub- addition to affine transformatiomc, an al-

pattern or subpattern class. In the anal- lowance was also made for dilation of in-

ysis of two-dimensional imagery this can tensity scale such as that which results

take the form of detection of corners and from under or over exposure of film within

edges or the location of a specific sil- latitude limits. The results cited, how-

houette. more particularly, we may be in- ever, are of little use in matching subpat-

terested in obtaining an exact match of a terns, since the algorithms are highly son-

specific portion of the image to a s- sitive to the background context. Never-

image, often a prototype, which may appear theless, the utility of a group theoretic

in an arbitrary manner, varying in size, approach to pattern matching was clearly

location and orientation. This is the demnstrted.
* problem which is herein addressed. In the following we present a method for

A related question was considered by Dir- performing a local search for an imbedded

ilten and Newman (31 where it was shown subpattern of a two-dimensional image. The

*This research was supported by the Army Rsearch Office, Contract
AAG29-30-C-0087 and by the Office of Niaval Research, Contract
N0014-76-C-1136.
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method is one involving adaptive control for j -12...n.

of a retina which seeks the desired sub- The differential operators so defined are

pattern by evolving along a curve in the to be considered as linear operators on the
space of parameters in a direction which space of analytic functions on G, or, more
assures improvement in the goodness of generally, on the space of differentiable

functions on G. The Lie algebra of G is

2. BACKGROUND simply the n-dimensional vector space con-

Let G be a Lie group of transformation on sisting of all linear combinations of these

an analytic manifold M. Suppose G has di- operators, and will be denoted by L(G) [2].

mension n while M has dimension m. Let x The Lie algebra of G may also be definad in

and y denote the coordinates of elements f terms of its actions on the manifold M.

and g in G, respectively, in a patch con- Analogous to (2.3) we define

taining the identity element e of G. Also, 3K

let p denote coordinates of an element u j - y2.5
of M in some patch in M. We may then ex- for a - 1,2,...,m and j - 1,2,...,n. ?in-

press the coordinates z of the product ally, as in (2.4) above we set

h - fg and the coordinates q of the ele- m

ment v - gu, relative to suitable patches, X! I Q . (2.6)

by means of analytic functions

z - J(x,y) (2.1) The operators Xj, Xj, .... X; apply to

q - K(yp) (2.2) functions defined on M and span a Lie alge-
bra isomorphic to L(G).

K and J are vector-valued, having values
in n-dimensional space Rn or Cn and m- The following result from [4] will be used

dimensional space em or Cm . Hereafter we later, and is stated for reference:

shall assume that these underlying spaces Theorem 2.1. Let f: M - R be differenti-

are real. We denote the ith component of albe and define F: G x M - R, in terms of

J by Ji and the jth component of K by K. coordinates, by

In order to define the Lie algebra of G we F(xp) - f(K(xp)). (2.7)

first introduce real-valued maps on G by Then for each j - 1,....n we have
aJiX F - X'F. (2.8)

P (x) (x Y) (2.3)
iy (Xjy) ( Let us consider a curve t - g(t) in G sat-

where i and j each range from 1 to n. The isfying g(O) - a. In terms of a coordinate

cross-section P.., which consists of the patch at e, g(t) may be described by a
j, n

Pi as i ranges from 1 to n, and j is fix- curve x(t) in R satisfying x(O) - 0. we

ed, may be thought of as a vector field in shall consider the case in which x(t) is

Rn. Such a vector field attaches to a given as the solution of an evolution equa-

point x the vector P, (x). As such, P,11 tion of the form

P"2''..'Pn form a basis for the tangent n

space at the point x [1,2]. The infinite- x(t) - X i wP.i(x(t)), x(0) - 0,(2.9)

sinal transformations of G may now be do- where Pl,....P'n are cross-sections of the

fined by array of functions given by (2.3), and

x iPxj  - X (t), n(t) are suitable control func-x j - i (x) ,(2.4) ....
i-l r~ i tions.
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II

2Now let p denote the coordinates of a Thus, YO) - lIF - Vi /2, where x is re-

point u in some coordinate patch. For a garded as a parameter.

differentiable map f: M - R we may define The following is a well-known property of

H: R x M-R by setting the Lie group G (21:

H(t,p) - f(g(t)u). (2.10)

We recognize that H(tp) a F(x(t),p) wher Lemma 1. In order that the differential

F is the extension of f to G x M as in d (x) - 0 at a point x 6 G, it is necessary

Theorem 2.1 above. From the point of view and sufficient that eac X i (x) - 0 where

of application, if we regard f: M - R as XIX 2 ....,Xn are the generators of L(G)

an image, then H(t,p) represents the mov- given by (2.4).

ing image obtained by translation due to By direct calculation, we obtain X 1V(x) -

the curve g(t). Also from [4), we have )((F(x,p) - V(p))XiF(x,p)dp. In practice,
W

Theorem 2.2. In the context above, this expression is difficult to compute

H n numerically, due to the presence of the
i-i term XiF, which cannot be computed directly

3. THE CONTRL MODEL from observed data. However, by Theorem
(2.1) we have XiF - X.F, and the latter can

By an image we mean a map f- M - R, where be calculated from a single value of x.

the value f(p) at a point p e M represents

the gray value at the picture element at Suppose now that a curve in G is given by

p. In practice, values are observed on a coordinates x(t) obtained as a solution of

subset w M, which we regard as a window Equation (2.9). We seek to find k(t) -

which may be translated by the action of G (A 1 n(t)) so that (t) - .(x(t))

on M. Thus, upon translation by an ele- decreases to a minimum value. Defining

ment x e G, the value observed at p e W is H(tp) - F(x(t),p) we obtain,

given by F(x,p) - f(K(x,pf), as in (2.7) k(t) - f(H(t,p) - V(p))'- (t,p)dp (3.2)

above. W
which, by application of Theorem (2.2), be-

We consider a given prototype sub-image V comes

defined on the window W, V: W- R. The n

problem then is to determine x e G such '(t) - I X(t) J (H(z,p) - V(p))X.H(t,p)dp

that F(x,p) a V(p) for all p e W, or deter- 'n' W

mine that no such x exists. As a matter n (3.3)

of practice, we seek x e G which minimizes =- i~ (t)cH - VXiH.

the objective function
S f (F(xp) Upon observing that <H - VX>

(3.1) <F - V,XiF> U XiT at x x(t), we deduce:

W
where dp represents a volume element and Theorem 3.1. If Ai(t) is chosen so that

the integral is over the window W, which sqnAi(t) - - sqn <H - V,XiH>, we have.
is assumed to be of bounded volume. (t) 1 0 for all , with equality at t -

In general, for any two functions fl,f2: if and only if dY a 0 at x - x(t0).

W - M we define
Among the class of bounded controls,

<fla2>  j ' f1!2dp and Ixi - (t)I 1 1, we see that the rate of de-

w crease of (t) is maximized by the choice

,l < 1 / 2  i(t) * - sgn <H - V,Xim>, (3.4)
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for i = 1,2,...,n. Of course, other stra- In all cases, the final results were quite

tegies can be formulated, including steep- reasonable, even in those cases where the

est descent, and some methods using un- prototype was absent. in the latter cases,

bounded controls. By proceeding along the search terminated with a 'beet" match,
trajectories defined by the solution of with a commensurately large final error.

(2.9) with X(t) given by (3.4), we ap- As an example, Figure 1 shows that starting
proach a critical point of Y (i.e. d - 0). position for a noisy image containing two

Since maxima and saddle points are u- objects. The prototype is indicated by the

stable under perturbation, in practice central silhouette, while the true target

this extreme point will always be a mini- is shifted upward, slightly to the right

mum. and is reduced in size. A false target

4. SIMULATION RESULTS overlaps the lower right corner of the pro-

The results discussed in the previous sec- totype.

tion have been implemented by a discrete

algorithm and tested on simulated data [5].
A digitized two-dimensional image was

first generated in the form of a large 8........

two-dimensional array, and the prototype . a9 !!...

was generated in a 20 x 20 window array. ".::..':.

The image space was assumed to be subject ." .'.

to translation, magnification and rotatio S.

giving rise to a four parameter Lie groupj .. :3
of transformations in the plane, R2 .  ,." *.,

A number of cases were considered, includ- ... ....... I

ing some involving multiple (false) tar-

gets and others in which the prototype was Fig. 1. Initial Window Position.

absent from the image being searched. In The termination conditions are shown in

some cases the image was contaminated by Figure 2, where the true target was located

5% random noise. In all cases the search after 49 steps. All parameters were cor-

was started with overlap between the pro- rect with the exception of magnification,

totype target and the image target. which was about 5% too large. Smaller val-

The differential equation (2.9) was solved ues of magnification, however, increase the

by means of a Runge-Kutta fourth order error due to the presence of the false ob-

method, with a dynamic step size, which ject, which is barely touching the bottom

was increased as necessary to accelerate edge of the window in Figure 2.

convergence and decreased as necessary to

maintain stability. Integration was re-

placed by summation, although we conjec-

ture that convergence could have been ac-
celerated by the use of a trapezoid rule.

Generally, search times ranged from 30 to

50 steps, with the longer search times

prevailing for the more difficult cases.
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OPTIMAL SELECTION OF IC FABRICATION PARAMETERS

C. KARAOKOLAS. W. M. PORTNOY AND A. L SAKS

Dqan~m o .Ekcval Empnenn Tezm Tech Unmwsigy. L"hbk Ta, 79409. U.S.A.

SUMMARY

A procedure is described in which the output characteristics of an integrated circuit are optimized with respect to a set of
variable fabrication parameters. A simple RC coupled audio amplifier is used as an example. The gain-bandwidth
product is obtained as a function of oxidation and diffusion times and temperatures, and the optimization is performed
by way of a line search using these variables as the parameters of the optimization. The values established for the
process parameters are consistent with those employed for conventional fabrication, and desired changes in per-
formance can be obtained, in general, by a straightforward readjustment of the values of the process variables.
Although limited by certain assumptions and a relatively primitive circuit, the results demonstrate the validity of the
procedure.

1. INTRODUCTION

The manufacture of an integrated circuit can be considered as a three-stage procedure. Initially, per-
formance requirements are provided or established by the circuit application. These requirements suggest
an interconnection of passive and active elements whose values and geometry are determined during the
second stage. Finally, a suitable process is chosen to fabricate the circuit design of the previous stages. Every
fabrication process generating the necessary impurity profiles is controlled by a number of independent
variables which must be assigned appropriate values. The specification of these values is an integral part of
the design and constitutes an implicit relation between the performance requirements and the fabrication
process. In practice, the process is usually known in advance, but the independent variables must still be
specified.

A situation which often occurs is one where a circuit is desired whose output characteristics are close and
yet not identical to those of a generically related circuit for which the entire three-stage design has been
completed. What is often done in these cases is to introduce appropriate changes in the second stage of the
procedure and then redesign the third. Because of the number of iterations involved, this practice turns out
to be quite laborious and expensive. In addition, more often than not, the new design calls for a new
geometry, and the creation of new masks adds significantly to labour, cost and delays.

The technique described here introduces optimal changes at the fabrication stage, several steps beyond
the circuit design stage. A given process model is incorporated into a given circuit model and the predicted
output characteristics are optimized with respect to a specified set of variable fabrication parameters. The
predicted output characteristics can be quite accurate if accurate circuit and process models are employed.
There is certainly an abundance of reliable circuit models; very detailed process models are available also,
(see, for example, Reference I). The optimization is performed by way of an index which measures the
difference between desired and predicted performance over a physically prescribed range of the fabrication
variables. For all practical purposes, the fabrication of the new circuit is obtained without any delay and is
essentially cost-free. Additional constraints can, of course, be imposed to resolve questions of realizability,
sensitivity, thermal variation, and so on.

The technique is particularly useful for those integrated circuits which are designed on a modular basis. In
these cases, a circuit consisting of several modules is desired, where most or all of the modules may have
been previously designed independently. The designs are frequently incompatible; the technique would
then provide a unified fabrication design using the existing geometry of the given modules.
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The following work applies the technique to the fabrication of an audio amplifier which might itself form
the modular basis for an operational amplifier array. Although simplified circuit and process models are
used, the results indicate the feasibility of the method, which is the objective of this paper.

2. CIRCUIT MODEL

The amplifier circuit, which incorporates an n-p-n transistor, is illustrated in Figure la. The specified
output function is the voltage gain, fA(l), which depends on the circuit variables shownin Figure lb; these,
excepting the emitter bypass and coupling capacitors, depend on impurity concentration profiles
established by the process. Because the emitter bypass capacitance is usually quite large, it was convenient
to make it a fixed external capacitor. The values of C. and C2 are very large and do not enter the
calculations.

IOIC

vcC c

V$ ffl ° 2

HA
(a)

RU5,

(bI

Figure 1. (a) Audio amplifier circuit; (b) equivalent circuit of the audio amplifier

The resistances rbb and rb.e are obtained from the fixed dimensions of the base and emitter regions and the
base sheet resistance. Distributed resistances R,, R 2 , R.- and R, are formed during the base diffusion, and
also depend on the base sheet resistance; their dimensions are fixed. The Miller capacitance, CM, includes
the depletion capacitances of the reverse-biased base-collector and forwaod-biased base-emitter junctions
(charge storage in the base is neglected).

The average impurity concentrations in the emitter and base regions (and the fixed uniform collector
concentration) determine the junction capacitances. These averages, and the base sheet resistance (which
includes a constant hole mobility term), require the emitter and base impurity profiles and the junction
depths in their calculation; the latter are obtained by equating emitter and base. and base and collector,
concentrations. The current gain, hf, is calculated from the average concentrations, the distance between
the junctions. and the minority carrier lifetimes and diffusion constants. Although these latter are
complicated functions of impurity concentration,' approximate expressions can be obtained.

3. PROCESS MODEL

Each term appearing in the expression for the gain is implicitly related, through the impurity concentration
profiles, to the parameters of the process. The concentration profiles are the solutions of the diffusion
equation,

aN(x. 1) a N(x, t)
- D (T)

8t =x"
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Table 1. Optimal fabrication parameters for specified gain in the
bandwidth 20 Hz to 20 kHz. Gain ia in dB. time W: is in seconds,

and temperature MT is in *C

Gain
Parameter 20 25 30 35 40

Ib 3,300 7,140 7,200 4,690 6.210
T, 1.100 1,130 1,170 1,200 1.200

it 1.200 1.200 1,230 1,230 1,260
T, 1.190 1.190 1.190 1.180 1,180
1. 2,400 2,400 2.370 2.3 10 2.370

T. 1,150 1,150 1,150 1,150 1.150
t2 1.230 930 930 870 870

T2  1.100 1,100 1.090 1,090 1.090

Table 11. Optimal fabrication parameters for specified gain in the
bandwidth 10 kHz to 40 kHz. Gain is in dB, time W' is in seconds,

and temperature MT is in *C

Gain
Parameter 30 35 40

Ib 5,800 6,330 4.140
Tb 1,160 1.200 1,200

it 1,150 1,260 1.150
T, 1,180 1,190 1.180
to 2.370 2,340 2.370
T. 1,150 1,160 1,150

82 80 630 940
T2 1.090 1,090 1.090

£40

2 0

20 50 100 200 500 1000 2000 S000 10000 20000
FFI0sLNCY (MV~

Figure .Specified (dashed lines) and optimally obtained (solid lines) lain versus frequency in the range 20 N: to 20 kHz
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assuming one-dimensional diffusion and a diffusion coefficient which depends on temperature only. The
process steps establish the boundary conditions on the solutions. A typical process sequence was chosen in
this work, consisting of a base diffusion blocking oxidation; a p-type base deposition followed by a base
drive-in diffusion; an emitter diffusion blocking oxidation; an n-type emitter diffusion; and a pre-
metalization oxidation. The bias resistors are derived from the base dilfusion. Photolithography and etching
wer assumed to take place wherever required; metalization is not considered to affect the impurity
profiles. The circuit variables then depend on the times and temperatures of the process sequence. These
times and temperatures are the independent parameters of the.optimization; quantities which do not
depend on them are considered constant. Eight significant process parameters were identified; these are

tb, the base diffusion time;
Tb, the base diffusion temperature;
ti, the emitter diffusion blocking oxide growth time;
T1 , the emitter diffusion blocking oxide growth temperature;
t., the emitter diffusion time;
7., the emitter diffusion temperature;
t2, the pre-metalization oxidation time; and
T2, the pre-metalization oxidation temperature.

These parameters were optimized assuming a fixed set of mask dimensions to obtain the desired frequency
response, JA(w)J.

4. OPTIMIZATION

The gain, JA(w)J, was calculated for an inital point, that is, for an 8-tuple of the independent parameters, tb,

T, ti, T,, t., T., t:, T2. IA(w)l was then compared with the desired gain, A0 , by way of the integral

J f . -[A -A(.)I] d.

where W2 - w(1 is the desired bandwidth. J is minimized using a simple line search, that is, by varying each
independent parameter while holding the others constant. In order to ensure reasonable values for the
optimal process variables, these were constrained; the maximum and minimum values permitted for
temperature were 1,200"C and 900*C, respectively, and for time, 7200s (2 h) and 600s (10 min),
respectively.

The optimization was performed first for several gains in the bandwidth 20 Hz to 20 kHz, and again for
the higher gains in the higher frequency range, 10 kHz to 40 kHz. The integral was evaluated using the
trapezoidal rule. 1.000 Hz increments were used throughout the calculation for the higher bandwidth; for
the lower, 1,000 Hz increments were used above 100 Hz, and 20 Hz increments below 100 Hz. Tempera-
ture and time were varied in 2°C and 30 s increments, respectively.

5. RESULTS AND DISCUSSION

The results of the optimization, obtained with two to three iterations, are tabulated in Tables I and II. The
values which were obtained for the elements of the equivalent circuit were quite reasonable in terms of a
conventional circuit design; however, these values are not particularly important, because they are only the
results of the optimization, and do not participate in it. Even atypical values would not be significant, as long
as they could be obtained within the constraints set on the process times and temperatures.

Figures 2 and 3 illustrate the behaviour of the optimal gains versus frequency in the two frequency ranges.
Changes which match moderate frequency requirements are obtained easily by an optimal readjustment of
the values of the fabrication parameters. As requirements become more severe, as at the higher frequencies
of Figure 3, deviation of circuit gain from desired values increases, finally becoming so large that a redesign
at circuit level is unavoidable.
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Figure 3. Speciid (dashed lines) and optimally obtained (solid limes) gain versus frequency in the bandividth 10 k~z to 40 kHz

There are two major limitations on the accuracy of the calculation. First, the process model suffers from
certain deficiencies because of several assumptions which were made. For example, the emitter blocking
oxide must be grown thick enough to be effective. For the tabulated values of it and Ti, the oxide thickness
is around 2,000 A,3 which is not thick enough to block the required 40 min phosphorous emitter diffusion. 3

However, a thickness constraint can be introduced, although it was not done here, to assure appropriate
oxide thickness. Also, the line search which was used to obtain the optimum does not guarantee a global
minimum. It is important to emphasize again that these results are not intended to establish a practical
process, but to demonstrate the use and feasibility of the technique.
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Continuation Algorithms for the Eigenvalue Problem*

B. Green, A. Iyer, R. -Saeks and K.-S. Chao
Department of El ectri cal Engi neeri ng

Texas Tech University
Lubbock, Texas 79409

Abstract

Three algorithms for the solution of the eigenvalue problem for

a continuous parameterized family, of sparse matrices are presented;

a continuous LU (or LR) algorithm, a continuous QR algorithiq, and a

continuous Hessenberg algorithm. Each of .the three algorithms may be

implemented recursively-and the sparsity of the given matrices is_.

preserved throughout the numerical process.

1iLC~lG 16'
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